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1
Introduction

The Dark Arts of Advanced and Unsafe Rust Programming

NOTE: This is a draft document, and may contain serious errors

Instead of the programs I had hoped for, there came only a shuddering blackness and
ineffable loneliness; and I saw at last a fearful truth which no one had ever dared to
breathe before — the unwhisperable secret of secrets — The fact that this language
of stone and stridor is not a sentient perpetuation of Rust as London is of Old
London and Paris of Old Paris, but that it is in fact quite unsafe, its sprawling body
imperfectly embalmed and infested with queer animate things which have nothing to
do with it as it was in compilation.

This book digs into all the awful details that are necessary to understand in order to write
correct Unsafe Rust programs. Due to the nature of this problem, it may lead to unleashing
untold horrors that shatter your psyche into a billion infinitesimal fragments of despair.
Should you wish a long and happy career of writing Rust programs, you should turn back now
and forget you ever saw this book. It is not necessary. However if you intend to write unsafe code
– or just want to dig into the guts of the language – this book contains invaluable information.
Unlike The Book1 we will be assuming considerable prior knowledge. In particular, you should
be comfortable with basic systems programming and Rust. If you don’t feel comfortable with
these topics, you should consider reading The Book2 first. Though we will not be assuming that
you have, and will take care to occasionally give a refresher on the basics where appropriate.
You can skip straight to this book if you want; just know that we won’t be explaining everything
from the ground up.
To be clear, this book goes into deep detail. We’re going to dig into exception-safety, pointer
aliasing, memory models, and even some type-theory. We will also be spending a lot of time
talking about the different kinds of safety and guarantees.

1http://doc.rust-lang.org/book/
2http://doc.rust-lang.org/book/

http://doc.rust-lang.org/book/
http://doc.rust-lang.org/book/
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Meet Safe and Unsafe

Programmers in safe “high-level” languages face a fundamental dilemma. On one hand, it would
be really great to just say what you want and not worry about how it’s done. On the other hand,
that can lead to unacceptably poor performance. It may be necessary to drop down to less clear
or idiomatic practices to get the performance characteristics you want. Or maybe you just throw
up your hands in disgust and decide to shell out to an implementation in a less sugary-wonderful
unsafe language.
Worse, when you want to talk directly to the operating system, you have to talk to an unsafe
language: C. C is ever-present and unavoidable. It’s the lingua-franca of the programming world.
Even other safe languages generally expose C interfaces for the world at large! Regardless of why
you’re doing it, as soon as your program starts talking to C it stops being safe.
With that said, Rust is totally a safe programming language.
Well, Rust has a safe programming language. Let’s step back a bit.
Rust can be thought of as being composed of two programming languages: Safe Rust and Unsafe
Rust. Safe Rust is For Reals Totally Safe. Unsafe Rust, unsurprisingly, is not For Reals Totally
Safe. In fact, Unsafe Rust lets you do some really crazy unsafe things.
Safe Rust is the true Rust programming language. If all you do is write Safe Rust, you will never
have to worry about type-safety or memory-safety. You will never endure a null or dangling
pointer, or any of that Undefined Behavior nonsense.
That’s totally awesome.
The standard library also gives you enough utilities out-of-the-box that you’ll be able to write
awesome high-performance applications and libraries in pure idiomatic Safe Rust.
But maybe you want to talk to another language. Maybe you’re writing a low-level abstraction
not exposed by the standard library. Maybe you’re writing the standard library (which is written
entirely in Rust). Maybe you need to do something the type-system doesn’t understand and just
frob some dang bits. Maybe you need Unsafe Rust.
Unsafe Rust is exactly like Safe Rust with all the same rules and semantics. However Unsafe
Rust lets you do some extra things that are Definitely Not Safe.
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The only things that are different in Unsafe Rust are that you can:

• Dereference raw pointers
• Call unsafe functions (including C functions, intrinsics, and the raw allocator)
• Implement unsafe traits
• Mutate statics

That’s it. The reason these operations are relegated to Unsafe is that misusing any of these
things will cause the ever dreaded Undefined Behavior. Invoking Undefined Behavior gives the
compiler full rights to do arbitrarily bad things to your program. You definitely should not invoke
Undefined Behavior.

Unlike C, Undefined Behavior is pretty limited in scope in Rust. All the core language cares
about is preventing the following things:

• Dereferencing null or dangling pointers
• Reading uninitialized memory (chapter 6, page 59)
• Breaking the [pointer aliasing rules]
• Producing invalid primitive values:

– dangling/null references
– a bool that isn’t 0 or 1
– an undefined enum discriminant
– a char outside the ranges [0x0, 0xD7FF] and [0xE000, 0x10FFFF]
– A non-utf8 str

• Unwinding into another language
• Causing a data race (section 9, page 81)

That’s it. That’s all the causes of Undefined Behavior baked into Rust. Of course, unsafe func-
tions and traits are free to declare arbitrary other constraints that a program must maintain to
avoid Undefined Behavior. However, generally violations of these constraints will just transitively
lead to one of the above problems. Some additional constraints may also derive from compiler
intrinsics that make special assumptions about how code can be optimized.

Rust is otherwise quite permissive with respect to other dubious operations. Rust considers it
“safe” to:

• Deadlock
• Have a race condition (section 9, page 81)
• Leak memory
• Fail to call destructors
• Overflow integers
• Abort the program
• Delete the production database

However any program that actually manages to do such a thing is probably incorrect. Rust
provides lots of tools to make these things rare, but these problems are considered impractical
to categorically prevent.
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How Safe and Unsafe Interact

So what’s the relationship between Safe and Unsafe Rust? How do they interact?
Rust models the separation between Safe and Unsafe Rust with the unsafe keyword, which can
be thought as a sort of foreign function interface (FFI) between Safe and Unsafe Rust. This
is the magic behind why we can say Safe Rust is a safe language: all the scary unsafe bits are
relegated exclusively to FFI just like every other safe language.
However because one language is a subset of the other, the two can be cleanly intermixed as long
as the boundary between Safe and Unsafe Rust is denoted with the unsafe keyword. No need to
write headers, initialize runtimes, or any of that other FFI boiler-plate.
There are several places unsafe can appear in Rust today, which can largely be grouped into two
categories:

• There are unchecked contracts here. To declare you understand this, I require you to write
unsafe elsewhere:

– On functions, unsafe is declaring the function to be unsafe to call. Users of the
function must check the documentation to determine what this means, and then have
to write unsafe somewhere to identify that they’re aware of the danger.

– On trait declarations, unsafe is declaring that implementing the trait is an unsafe
operation, as it has contracts that other unsafe code is free to trust blindly. (More on
this below.)

• I am declaring that I have, to the best of my knowledge, adhered to the unchecked contracts:
– On trait implementations, unsafe is declaring that the contract of the unsafe trait has

been upheld.
– On blocks, unsafe is declaring any unsafety from an unsafe operation within to be

handled, and therefore the parent function is safe.

There is also #[unsafe_no_drop_flag], which is a special case that exists for historical reasons
and is in the process of being phased out. See the section on drop flags (section 6, page 61) for
details.
Some examples of unsafe functions:

• slice::get_unchecked will perform unchecked indexing, allowing memory safety to be freely
violated.

• every raw pointer to sized type has intrinsic offset method that invokes Undefined Behavior
if it is not “in bounds” as defined by LLVM.

• mem::transmute reinterprets some value as having the given type, bypassing type safety in
arbitrary ways. (see [conversions] for details)

• All FFI functions are unsafe because they can do arbitrary things. C being an obvious
culprit, but generally any language can do something that Rust isn’t happy about.

As of Rust 1.0 there are exactly two unsafe traits:

• Send is a marker trait (it has no actual API) that promises implementors are safe to send
(move) to another thread.
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• Sync is a marker trait that promises that threads can safely share implementors through a
shared reference.

The need for unsafe traits boils down to the fundamental property of safe code:

No matter how completely awful Safe code is, it can’t cause Undefined Behavior.

This means that Unsafe Rust, the royal vanguard of Undefined Behavior, has to be super
paranoid about generic safe code. To be clear, Unsafe Rust is totally free to trust specific safe
code. Anything else would degenerate into infinite spirals of paranoid despair. In particular
it’s generally regarded as ok to trust the standard library to be correct. std is effectively an
extension of the language, and you really just have to trust the language. If std fails to uphold
the guarantees it declares, then it’s basically a language bug.

That said, it would be best to minimize needlessly relying on properties of concrete safe code.
Bugs happen! Of course, I must reinforce that this is only a concern for Unsafe code. Safe code
can blindly trust anyone and everyone as far as basic memory-safety is concerned.

On the other hand, safe traits are free to declare arbitrary contracts, but because implementing
them is safe, unsafe code can’t trust those contracts to actually be upheld. This is different from
the concrete case because anyone can randomly implement the interface. There is something
fundamentally different about trusting a particular piece of code to be correct, and trusting all
the code that will ever be written to be correct.

For instance Rust has PartialOrd and Ord traits to try to differentiate between types which can
“just” be compared, and those that actually implement a total ordering. Pretty much every API
that wants to work with data that can be compared wants Ord data. For instance, a sorted map
like BTreeMap doesn’t even make sense for partially ordered types. If you claim to implement
Ord for a type, but don’t actually provide a proper total ordering, BTreeMap will get really
confused and start making a total mess of itself. Data that is inserted may be impossible to find!

But that’s okay. BTreeMap is safe, so it guarantees that even if you give it a completely garbage
Ord implementation, it will still do something safe. You won’t start reading uninitialized or
unallocated memory. In fact, BTreeMap manages to not actually lose any of your data. When
the map is dropped, all the destructors will be successfully called! Hooray!

However BTreeMap is implemented using a modest spoonful of Unsafe Rust (most collections
are). That means that it’s not necessarily trivially true that a bad Ord implementation will make
BTreeMap behave safely. BTreeMap must be sure not to rely on Ord where safety is at stake.
Ord is provided by safe code, and safety is not safe code’s responsibility to uphold.

But wouldn’t it be grand if there was some way for Unsafe to trust some trait contracts some-
where? This is the problem that unsafe traits tackle: by marking the trait itself as unsafe to
implement, unsafe code can trust the implementation to uphold the trait’s contract. Although
the trait implementation may be incorrect in arbitrary other ways.

For instance, given a hypothetical UnsafeOrd trait, this is technically a valid implementation:

unsafe impl UnsafeOrd for MyType {
fn cmp(&self, other: &Self) -> Ordering {

Ordering::Equal
}

}
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But it’s probably not the implementation you want.

Rust has traditionally avoided making traits unsafe because it makes Unsafe pervasive, which is
not desirable. The reason Send and Sync are unsafe is because thread safety is a fundamental
property that unsafe code cannot possibly hope to defend against in the same way it would defend
against a bad Ord implementation. The only way to possibly defend against thread-unsafety
would be to not use threading at all. Making every load and store atomic isn’t even sufficient,
because it’s possible for complex invariants to exist between disjoint locations in memory. For
instance, the pointer and capacity of a Vec must be in sync.

Even concurrent paradigms that are traditionally regarded as Totally Safe like message passing
implicitly rely on some notion of thread safety – are you really message-passing if you pass a
pointer? Send and Sync therefore require some fundamental level of trust that Safe code can’t
provide, so they must be unsafe to implement. To help obviate the pervasive unsafety that this
would introduce, Send (resp. Sync) is automatically derived for all types composed only of Send
(resp. Sync) values. 99% of types are Send and Sync, and 99% of those never actually say it
(the remaining 1% is overwhelmingly synchronization primitives).

Working with Unsafe

Rust generally only gives us the tools to talk about Unsafe Rust in a scoped and binary manner.
Unfortunately, reality is significantly more complicated than that. For instance, consider the
following toy function:

fn index(idx: usize, arr: &[u8]) -> Option<u8> {
if idx < arr.len() {

unsafe {
Some(*arr.get_unchecked(idx))

}
} else {

None
}

}

Clearly, this function is safe. We check that the index is in bounds, and if it is, index into the
array in an unchecked manner. But even in such a trivial function, the scope of the unsafe block
is questionable. Consider changing the < to a <=:

fn index(idx: usize, arr: &[u8]) -> Option<u8> {
if idx <= arr.len() {

unsafe {
Some(*arr.get_unchecked(idx))

}
} else {

None
}

}
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This program is now unsound, and yet we only modified safe code. This is the fundamental
problem of safety: it’s non-local. The soundness of our unsafe operations necessarily depends on
the state established by otherwise “safe” operations.

Safety is modular in the sense that opting into unsafety doesn’t require you to consider arbitrary
other kinds of badness. For instance, doing an unchecked index into a slice doesn’t mean you
suddenly need to worry about the slice being null or containing uninitialized memory. Nothing
fundamentally changes. However safety isn’t modular in the sense that programs are inherently
stateful and your unsafe operations may depend on arbitrary other state.

Trickier than that is when we get into actual statefulness. Consider a simple implementation of
Vec:

use std::ptr;

// Note this definition is insufficient. See the section on implementing Vec.
pub struct Vec<T> {

ptr: *mut T,
len: usize,
cap: usize,

}

// Note this implementation does not correctly handle zero-sized types.
// We currently live in a nice imaginary world of only positive fixed-size
// types.
impl<T> Vec<T> {

pub fn push(&mut self, elem: T) {
if self.len == self.cap {

// not important for this example
self.reallocate();

}
unsafe {

ptr::write(self.ptr.offset(self.len as isize), elem);
self.len += 1;

}
}

# fn reallocate(&mut self) { }
}

This code is simple enough to reasonably audit and verify. Now consider adding the following
method:

fn make_room(&mut self) {
// grow the capacity
self.cap += 1;

}

This code is 100% Safe Rust but it is also completely unsound. Changing the capacity violates
the invariants of Vec (that cap reflects the allocated space in the Vec). This is not something the
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rest of Vec can guard against. It has to trust the capacity field because there’s no way to verify
it.

unsafe does more than pollute a whole function: it pollutes a whole module. Generally, the only
bullet-proof way to limit the scope of unsafe code is at the module boundary with privacy.

However this works perfectly. The existence of make_room is not a problem for the soundness of
Vec because we didn’t mark it as public. Only the module that defines this function can call it.
Also, make_room directly accesses the private fields of Vec, so it can only be written in the same
module as Vec.

It is therefore possible for us to write a completely safe abstraction that relies on complex
invariants. This is critical to the relationship between Safe Rust and Unsafe Rust. We have
already seen that Unsafe code must trust some Safe code, but can’t trust generic Safe code.
It can’t trust an arbitrary implementor of a trait or any function that was passed to it to be
well-behaved in a way that safe code doesn’t care about.

However if unsafe code couldn’t prevent client safe code from messing with its state in arbitrary
ways, safety would be a lost cause. Thankfully, it can prevent arbitrary code from messing with
critical state due to privacy.

Safety lives!
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Data Layout

Low-level programming cares a lot about data layout. It’s a big deal. It also pervasively influences
the rest of the language, so we’re going to start by digging into how data is represented in Rust.

repr(Rust)

First and foremost, all types have an alignment specified in bytes. The alignment of a type
specifies what addresses are valid to store the value at. A value of alignment n must only be
stored at an address that is a multiple of n. So alignment 2 means you must be stored at an even
address, and 1 means that you can be stored anywhere. Alignment is at least 1, and always a
power of 2. Most primitives are generally aligned to their size, although this is platform-specific
behavior. In particular, on x86 u64 and f64 may be only aligned to 32 bits.

A type’s size must always be a multiple of its alignment. This ensures that an array of that type
may always be indexed by offsetting by a multiple of its size. Note that the size and alignment
of a type may not be known statically in the case of dynamically sized types (section 3, page 20).

Rust gives you the following ways to lay out composite data:

• structs (named product types)
• tuples (anonymous product types)
• arrays (homogeneous product types)
• enums (named sum types – tagged unions)

An enum is said to be C-like if none of its variants have associated data.

Composite structures will have an alignment equal to the maximum of their fields’ alignment.
Rust will consequently insert padding where necessary to ensure that all fields are properly
aligned and that the overall type’s size is a multiple of its alignment. For instance:
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struct A {
a: u8,
b: u32,
c: u16,

}

will be 32-bit aligned on an architecture that aligns these primitives to their respective sizes. The
whole struct will therefore have a size that is a multiple of 32-bits. It will potentially become:

struct A {
a: u8,
_pad1: [u8; 3], // to align `b`
b: u32,
c: u16,
_pad2: [u8; 2], // to make overall size multiple of 4

}

There is no indirection for these types; all data is stored within the struct, as you would expect
in C. However with the exception of arrays (which are densely packed and in-order), the layout
of data is not by default specified in Rust. Given the two following struct definitions:

struct A {
a: i32,
b: u64,

}

struct B {
a: i32,
b: u64,

}

Rust does guarantee that two instances of A have their data laid out in exactly the same way.
However Rust does not currently guarantee that an instance of A has the same field ordering or
padding as an instance of B, though in practice there’s no reason why they wouldn’t.

With A and B as written, this point would seem to be pedantic, but several other features of
Rust make it desirable for the language to play with data layout in complex ways.

For instance, consider this struct:

struct Foo<T, U> {
count: u16,
data1: T,
data2: U,

}

Now consider the monomorphizations of Foo<u32, u16> and Foo<u16, u32>. If Rust lays out the
fields in the order specified, we expect it to pad the values in the struct to satisfy their alignment
requirements. So if Rust didn’t reorder fields, we would expect it to produce the following:
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struct Foo<u16, u32> {
count: u16,
data1: u16,
data2: u32,

}

struct Foo<u32, u16> {
count: u16,
_pad1: u16,
data1: u32,
data2: u16,
_pad2: u16,

}

The latter case quite simply wastes space. An optimal use of space therefore requires different
monomorphizations to have different field orderings.

Note: this is a hypothetical optimization that is not yet implemented in Rust 1.0

Enums make this consideration even more complicated. Naively, an enum such as:

enum Foo {
A(u32),
B(u64),
C(u8),

}

would be laid out as:

struct FooRepr {
data: u64, // this is either a u64, u32, or u8 based on `tag`
tag: u8, // 0 = A, 1 = B, 2 = C

}

And indeed this is approximately how it would be laid out in general (modulo the size and
position of tag).

However there are several cases where such a representation is inefficient. The classic case of
this is Rust’s “null pointer optimization”: an enum consisting of a single outer unit variant (e.g.
None) and a (potentially nested) non- nullable pointer variant (e.g. &T) makes the tag unnecessary,
because a null pointer value can safely be interpreted to mean that the unit variant is chosen
instead. The net result is that, for example, size_of::<Option<&T>>() == size_of::<&T>().

There are many types in Rust that are, or contain, non-nullable pointers such as Box<T>, Vec<T>,
String, &T, and &mut T. Similarly, one can imagine nested enums pooling their tags into a sin-
gle discriminant, as they are by definition known to have a limited range of valid values. In
principle enums could use fairly elaborate algorithms to cache bits throughout nested types with
special constrained representations. As such it is especially desirable that we leave enum layout
unspecified today.
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Exotically Sized Types

Most of the time, we think in terms of types with a fixed, positive size. This is not always the
case, however.

Dynamically Sized Types (DSTs)

Rust in fact supports Dynamically Sized Types (DSTs): types without a statically known size
or alignment. On the surface, this is a bit nonsensical: Rust must know the size and alignment
of something in order to correctly work with it! In this regard, DSTs are not normal types. Due
to their lack of a statically known size, these types can only exist behind some kind of pointer.
Any pointer to a DST consequently becomes a fat pointer consisting of the pointer and the
information that “completes” them (more on this below).

There are two major DSTs exposed by the language: trait objects, and slices.

A trait object represents some type that implements the traits it specifies. The exact original
type is erased in favor of runtime reflection with a vtable containing all the information necessary
to use the type. This is the information that completes a trait object: a pointer to its vtable.

A slice is simply a view into some contiguous storage – typically an array or Vec. The information
that completes a slice is just the number of elements it points to.

Structs can actually store a single DST directly as their last field, but this makes them a DST
as well:

// Can't be stored on the stack directly
struct Foo {

info: u32,
data: [u8],

}

NOTE: As of Rust 1.0 struct DSTs are broken if the last field has a variable position
based on its alignment1.

Zero Sized Types (ZSTs)

Rust actually allows types to be specified that occupy no space:

struct Foo; // No fields = no size

// All fields have no size = no size
struct Baz {

foo: Foo,
qux: (), // empty tuple has no size
baz: [u8; 0], // empty array has no size

}

1https://github.com/rust-lang/rust/issues/26403

https://github.com/rust-lang/rust/issues/26403
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On their own, Zero Sized Types (ZSTs) are, for obvious reasons, pretty useless. However as with
many curious layout choices in Rust, their potential is realized in a generic context: Rust largely
understands that any operation that produces or stores a ZST can be reduced to a no-op. First
off, storing it doesn’t even make sense – it doesn’t occupy any space. Also there’s only one value
of that type, so anything that loads it can just produce it from the aether – which is also a no-op
since it doesn’t occupy any space.
One of the most extreme example’s of this is Sets and Maps. Given a Map<Key, Value>, it is
common to implement a Set<Key> as just a thin wrapper around Map<Key, UselessJunk>. In
many languages, this would necessitate allocating space for UselessJunk and doing work to store
and load UselessJunk only to discard it. Proving this unnecessary would be a difficult analysis
for the compiler.
However in Rust, we can just say that Set<Key> = Map<Key, ()>. Now Rust statically knows that
every load and store is useless, and no allocation has any size. The result is that the monomor-
phized code is basically a custom implementation of a HashSet with none of the overhead that
HashMap would have to support values.
Safe code need not worry about ZSTs, but unsafe code must be careful about the consequence of
types with no size. In particular, pointer offsets are no-ops, and standard allocators (including
jemalloc, the one used by default in Rust) may return nullptr when a zero-sized allocation is
requested, which is indistinguishable from out of memory.

Empty Types

Rust also enables types to be declared that cannot even be instantiated. These types can only
be talked about at the type level, and never at the value level. Empty types can be declared by
specifying an enum with no variants:

enum Void {} // No variants = EMPTY

Empty types are even more marginal than ZSTs. The primary motivating example for Void
types is type-level unreachability. For instance, suppose an API needs to return a Result in
general, but a specific case actually is infallible. It’s actually possible to communicate this at the
type level by returning a Result<T, Void>. Consumers of the API can confidently unwrap such
a Result knowing that it’s statically impossible for this value to be an Err, as this would require
providing a value of type Void.
In principle, Rust can do some interesting analyses and optimizations based on this fact. For
instance, Result<T, Void> could be represented as just T, because the Err case doesn’t actually
exist. The following could also compile:

enum Void {}

let res: Result<u32, Void> = Ok(0);

// Err doesn't exist anymore, so Ok is actually irrefutable.
let Ok(num) = res;

But neither of these tricks work today, so all Void types get you is the ability to be confident
that certain situations are statically impossible.
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One final subtle detail about empty types is that raw pointers to them are actually valid to
construct, but dereferencing them is Undefined Behavior because that doesn’t actually make
sense. That is, you could model C’s void * type with *const Void, but this doesn’t necessarily
gain anything over using e.g. *const (), which is safe to randomly dereference.

Other reprs

Rust allows you to specify alternative data layout strategies from the default.

repr(C)

This is the most important repr. It has fairly simple intent: do what C does. The order,
size, and alignment of fields is exactly what you would expect from C or C++. Any type you
expect to pass through an FFI boundary should have repr(C), as C is the lingua-franca of the
programming world. This is also necessary to soundly do more elaborate tricks with data layout
such as reinterpreting values as a different type.

However, the interaction with Rust’s more exotic data layout features must be kept in mind.
Due to its dual purpose as “for FFI” and “for layout control”, repr(C) can be applied to types
that will be nonsensical or problematic if passed through the FFI boundary.

• ZSTs are still zero-sized, even though this is not a standard behavior in C, and is explicitly
contrary to the behavior of an empty type in C++, which still consumes a byte of space.

• DSTs, tuples, and tagged unions are not a concept in C and as such are never FFI safe.

• Tuple structs are like structs with regards to repr(C), as the only difference from a struct
is that the fields aren’t named.

• If the type would have any drop flags (section 6, page 61), they will still be
added

• This is equivalent to one of repr(u*) (see the next section) for enums. The chosen size is
the default enum size for the target platform’s C ABI. Note that enum representation in
C is implementation defined, so this is really a “best guess”. In particular, this may be
incorrect when the C code of interest is compiled with certain flags.

repr(u8), repr(u16), repr(u32), repr(u64)

These specify the size to make a C-like enum. If the discriminant overflows the integer it has to
fit in, it will produce a compile-time error. You can manually ask Rust to allow this by setting
the overflowing element to explicitly be 0. However Rust will not allow you to create an enum
where two variants have the same discriminant.

On non-C-like enums, this will inhibit certain optimizations like the null- pointer optimization.

These reprs have no effect on a struct.
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repr(packed)

repr(packed) forces Rust to strip any padding, and only align the type to a byte. This may
improve the memory footprint, but will likely have other negative side-effects.

In particular, most architectures strongly prefer values to be aligned. This may mean the un-
aligned loads are penalized (x86), or even fault (some ARM chips). For simple cases like directly
loading or storing a packed field, the compiler might be able to paper over alignment issues with
shifts and masks. However if you take a reference to a packed field, it’s unlikely that the compiler
will be able to emit code to avoid an unaligned load.

As of Rust 1.0 this can cause undefined behavior.2

repr(packed) is not to be used lightly. Unless you have extreme requirements, this should not
be used.

This repr is a modifier on repr(C) and repr(rust).

2https://github.com/rust-lang/rust/issues/27060

https://github.com/rust-lang/rust/issues/27060
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4
Ownership

Ownership is the breakout feature of Rust. It allows Rust to be completely memory-safe and
efficient, while avoiding garbage collection. Before getting into the ownership system in detail,
we will consider the motivation of this design.

We will assume that you accept that garbage collection (GC) is not always an optimal solution,
and that it is desirable to manually manage memory in some contexts. If you do not accept this,
might I interest you in a different language?

Regardless of your feelings on GC, it is pretty clearly a massive boon to making code safe. You
never have to worry about things going away too soon (although whether you still wanted to
be pointing at that thing is a different issue…). This is a pervasive problem that C and C++
programs need to deal with. Consider this simple mistake that all of us who have used a non-GC’d
language have made at one point:

fn as_str(data: &u32) -> &str {
// compute the string
let s = format!("{}", data);

// OH NO! We returned a reference to something that
// exists only in this function!
// Dangling pointer! Use after free! Alas!
// (this does not compile in Rust)
&s

}

This is exactly what Rust’s ownership system was built to solve. Rust knows the scope in which
the &s lives, and as such can prevent it from escaping. However this is a simple case that even a
C compiler could plausibly catch. Things get more complicated as code gets bigger and pointers
get fed through various functions. Eventually, a C compiler will fall down and won’t be able to
perform sufficient escape analysis to prove your code unsound. It will consequently be forced to
accept your program on the assumption that it is correct.
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This will never happen to Rust. It’s up to the programmer to prove to the compiler that
everything is sound.

Of course, Rust’s story around ownership is much more complicated than just verifying that
references don’t escape the scope of their referent. That’s because ensuring pointers are always
valid is much more complicated than this. For instance in this code,

let mut data = vec![1, 2, 3];
// get an internal reference
let x = &data[0];

// OH NO! `push` causes the backing storage of `data` to be reallocated.
// Dangling pointer! User after free! Alas!
// (this does not compile in Rust)
data.push(4);

println!("{}", x);

naive scope analysis would be insufficient to prevent this bug, because data does in fact live as
long as we needed. However it was changed while we had a reference into it. This is why Rust
requires any references to freeze the referent and its owners.

References

This section gives a high-level view of the memory model that all Rust programs must satisfy to
be correct. Safe code is statically verified to obey this model by the borrow checker. Unsafe code
may go above and beyond the borrow checker while still satisfying this model. The borrow checker
may also be extended to allow more programs to compile, as long as this more fundamental model
is satisfied.

There are two kinds of reference:

• Shared reference: &
• Mutable reference: &mut

Which obey the following rules:

• A reference cannot outlive its referent
• A mutable reference cannot be aliased

That’s it. That’s the whole model. Of course, we should probably define what aliased means.
To define aliasing, we must define the notion of paths and liveness.

NOTE: The model that follows is generally agreed to be dubious and have issues.
It’s ok-ish as an intuitive model, but fails to capture the desired semantics. We
leave this here to be able to use notions introduced here in later sections. This will
be significantly changed in the future. TODO: do that.
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Paths

If all Rust had were values (no pointers), then every value would be uniquely owned by a variable
or composite structure. From this we naturally derive a tree of ownership. The stack itself is the
root of the tree, with every variable as its direct children. Each variable’s direct children would
be their fields (if any), and so on.

From this view, every value in Rust has a unique path in the tree of ownership. Of particular
interest are ancestors and descendants: if x owns y, then x is an ancestor of y, and y is a descendant
of x. Note that this is an inclusive relationship: x is a descendant and ancestor of itself.

We can then define references as simply names for paths. When you create a reference, you’re
declaring that an ownership path exists to this address of memory.

Tragically, plenty of data doesn’t reside on the stack, and we must also accommodate this.
Globals and thread-locals are simple enough to model as residing at the bottom of the stack
(though we must be careful with mutable globals). Data on the heap poses a different problem.

If all Rust had on the heap was data uniquely owned by a pointer on the stack, then we could
just treat such a pointer as a struct that owns the value on the heap. Box, Vec, String, and
HashMap, are examples of types which uniquely own data on the heap.

Unfortunately, data on the heap is not always uniquely owned. Rc for instance introduces a
notion of shared ownership. Shared ownership of a value means there is no unique path to it. A
value with no unique path limits what we can do with it.

In general, only shared references can be created to non-unique paths. However mechanisms
which ensure mutual exclusion may establish One True Owner temporarily, establishing a unique
path to that value (and therefore all its children). If this is done, the value may be mutated. In
particular, a mutable reference can be taken.

The most common way to establish such a path is through interior mutability, in contrast to the
inherited mutability that everything in Rust normally uses. Cell, RefCell, Mutex, and RWLock
are all examples of interior mutability types. These types provide exclusive access through
runtime restrictions.

An interesting case of this effect is Rc itself: if an Rc has refcount 1, then it is safe to mutate or
even move its internals. Note however that the refcount itself uses interior mutability.

In order to correctly communicate to the type system that a variable or field of a struct can have
interior mutability, it must be wrapped in an UnsafeCell. This does not in itself make it safe to
perform interior mutability operations on that value. You still must yourself ensure that mutual
exclusion is upheld.

Liveness

Note: Liveness is not the same thing as a lifetime, which will be explained in detail in the next
section of this chapter.

Roughly, a reference is live at some point in a program if it can be dereferenced. Shared references
are always live unless they are literally unreachable (for instance, they reside in freed or leaked
memory). Mutable references can be reachable but not live through the process of reborrowing.
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A mutable reference can be reborrowed to either a shared or mutable reference to one of its
descendants. A reborrowed reference will only be live again once all reborrows derived from it
expire. For instance, a mutable reference can be reborrowed to point to a field of its referent:

let x = &mut (1, 2);
{

// reborrow x to a subfield
let y = &mut x.0;
// y is now live, but x isn't
*y = 3;

}
// y goes out of scope, so x is live again
*x = (5, 7);

It is also possible to reborrow into multiple mutable references, as long as they are disjoint: no
reference is an ancestor of another. Rust explicitly enables this to be done with disjoint struct
fields, because disjointness can be statically proven:

let x = &mut (1, 2);
{

// reborrow x to two disjoint subfields
let y = &mut x.0;
let z = &mut x.1;

// y and z are now live, but x isn't
*y = 3;
*z = 4;

}
// y and z go out of scope, so x is live again
*x = (5, 7);

However it’s often the case that Rust isn’t sufficiently smart to prove that multiple borrows are
disjoint. This does not mean it is fundamentally illegal to make such a borrow, just that Rust
isn’t as smart as you want.
To simplify things, we can model variables as a fake type of reference: owned references. Owned
references have much the same semantics as mutable references: they can be re-borrowed in a
mutable or shared manner, which makes them no longer live. Live owned references have the
unique property that they can be moved out of (though mutable references can be swapped out
of). This power is only given to live owned references because moving its referent would of course
invalidate all outstanding references prematurely.
As a local lint against inappropriate mutation, only variables that are marked as mut can be
borrowed mutably.
It is interesting to note that Box behaves exactly like an owned reference. It can be moved out
of, and Rust understands it sufficiently to reason about its paths like a normal variable.

Aliasing

With liveness and paths defined, we can now properly define aliasing:
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A mutable reference is aliased if there exists another live reference to one of its
ancestors or descendants.

(If you prefer, you may also say the two live references alias each other. This has no semantic
consequences, but is probably a more useful notion when verifying the soundness of a construct.)

That’s it. Super simple right? Except for the fact that it took us two pages to define all of the
terms in that definition. You know: Super. Simple.

Actually it’s a bit more complicated than that. In addition to references, Rust has raw pointers:
*const T and *mut T. Raw pointers have no inherent ownership or aliasing semantics. As a result,
Rust makes absolutely no effort to track that they are used correctly, and they are wildly unsafe.

It is an open question to what degree raw pointers have alias semantics. However
it is important for these definitions to be sound that the existence of a raw pointer
does not imply some kind of live path.

Lifetimes

Rust enforces these rules through lifetimes. Lifetimes are effectively just names for scopes some-
where in the program. Each reference, and anything that contains a reference, is tagged with a
lifetime specifying the scope it’s valid for.

Within a function body, Rust generally doesn’t let you explicitly name the lifetimes involved.
This is because it’s generally not really necessary to talk about lifetimes in a local context; Rust
has all the information and can work out everything as optimally as possible. Many anonymous
scopes and temporaries that you would otherwise have to write are often introduced to make
your code Just Work.

However once you cross the function boundary, you need to start talking about lifetimes. Life-
times are denoted with an apostrophe: 'a, 'static. To dip our toes with lifetimes, we’re going
to pretend that we’re actually allowed to label scopes with lifetimes, and desugar the examples
from the start of this chapter.

Originally, our examples made use of aggressive sugar – high fructose corn syrup even – around
scopes and lifetimes, because writing everything out explicitly is extremely noisy. All Rust code
relies on aggressive inference and elision of “obvious” things.

One particularly interesting piece of sugar is that each let statement implicitly introduces a
scope. For the most part, this doesn’t really matter. However it does matter for variables that
refer to each other. As a simple example, let’s completely desugar this simple piece of Rust code:

let x = 0;
let y = &x;
let z = &y;

The borrow checker always tries to minimize the extent of a lifetime, so it will likely desugar to
the following:
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// NOTE: `'a: {` and `&'b x` is not valid syntax!
'a: {

let x: i32 = 0;
'b: {

// lifetime used is 'b because that's good enough.
let y: &'b i32 = &'b x;
'c: {

// ditto on 'c
let z: &'c &'b i32 = &'c y;

}
}

}

Wow. That’s… awful. Let’s all take a moment to thank Rust for making this easier.

Actually passing references to outer scopes will cause Rust to infer a larger lifetime:

let x = 0;
let z;
let y = &x;
z = y;

'a: {
let x: i32 = 0;
'b: {

let z: &'b i32;
'c: {

// Must use 'b here because this reference is
// being passed to that scope.
let y: &'b i32 = &'b x;
z = y;

}
}

}

Example: references that outlive referents

Alright, let’s look at some of those examples from before:

fn as_str(data: &u32) -> &str {
let s = format!("{}", data);
&s

}

desugars to:
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fn as_str<'a>(data: &'a u32) -> &'a str {
'b: {

let s = format!("{}", data);
return &'a s;

}
}

This signature of as_str takes a reference to a u32 with some lifetime, and promises that it can
produce a reference to a str that can live just as long. Already we can see why this signature
might be trouble. That basically implies that we’re going to find a str somewhere in the scope
the reference to the u32 originated in, or somewhere even earlier. That’s a bit of a tall order.

We then proceed to compute the string s, and return a reference to it. Since the contract of
our function says the reference must outlive 'a, that’s the lifetime we infer for the reference.
Unfortunately, s was defined in the scope 'b, so the only way this is sound is if 'b contains 'a
– which is clearly false since 'a must contain the function call itself. We have therefore created
a reference whose lifetime outlives its referent, which is literally the first thing we said that
references can’t do. The compiler rightfully blows up in our face.

To make this more clear, we can expand the example:

fn as_str<'a>(data: &'a u32) -> &'a str {
'b: {

let s = format!("{}", data);
return &'a s

}
}

fn main() {
'c: {

let x: u32 = 0;
'd: {

// An anonymous scope is introduced because the borrow does not
// need to last for the whole scope x is valid for. The return
// of as_str must find a str somewhere before this function
// call. Obviously not happening.
println!("{}", as_str::<'d>(&'d x));

}
}

}

Shoot!

Of course, the right way to write this function is as follows:

fn to_string(data: &u32) -> String {
format!("{}", data)

}
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We must produce an owned value inside the function to return it! The only way we could have
returned an &'a str would have been if it was in a field of the &'a u32, which is obviously not
the case.

(Actually we could have also just returned a string literal, which as a global can be considered
to reside at the bottom of the stack; though this limits our implementation just a bit.)

Example: aliasing a mutable reference

How about the other example:

let mut data = vec![1, 2, 3];
let x = &data[0];
data.push(4);
println!("{}", x);

'a: {
let mut data: Vec<i32> = vec![1, 2, 3];
'b: {

// 'b is as big as we need this borrow to be
// (just need to get to `println!`)
let x: &'b i32 = Index::index::<'b>(&'b data, 0);
'c: {

// Temporary scope because we don't need the
// &mut to last any longer.
Vec::push(&'c mut data, 4);

}
println!("{}", x);

}
}

The problem here is a bit more subtle and interesting. We want Rust to reject this program for
the following reason: We have a live shared reference x to a descendant of data when we try to
take a mutable reference to data to push. This would create an aliased mutable reference, which
would violate the second rule of references.

However this is not at all how Rust reasons that this program is bad. Rust doesn’t understand
that x is a reference to a subpath of data. It doesn’t understand Vec at all. What it does see is
that x has to live for 'b to be printed. The signature of Index::index subsequently demands that
the reference we take to data has to survive for 'b. When we try to call push, it then sees us try
to make an &'c mut data. Rust knows that 'c is contained within 'b, and rejects our program
because the &'b data must still be live!

Here we see that the lifetime system is much more coarse than the reference semantics we’re
actually interested in preserving. For the most part, that’s totally ok, because it keeps us from
spending all day explaining our program to the compiler. However it does mean that several
programs that are totally correct with respect to Rust’s true semantics are rejected because
lifetimes are too dumb.
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Limits of Lifetimes

Given the following code:

struct Foo;

impl Foo {
fn mutate_and_share(&mut self) -> &Self { &*self }
fn share(&self) {}

}

fn main() {
let mut foo = Foo;
let loan = foo.mutate_and_share();
foo.share();

}

One might expect it to compile. We call mutate_and_share, which mutably borrows foo tem-
porarily, but then returns only a shared reference. Therefore we would expect foo.share() to
succeed as foo shouldn’t be mutably borrowed.

However when we try to compile it:

<anon>:11:5: 11:8 error: cannot borrow `foo` as immutable because it is also borrowed
↳ as mutable
<anon>:11 foo.share();

^~~
<anon>:10:16: 10:19 note: previous borrow of `foo` occurs here; the mutable borrow pre
↳ vents subsequent moves, borrows, or modification of `foo` until the borrow ends
<anon>:10 let loan = foo.mutate_and_share();

^~~
<anon>:12:2: 12:2 note: previous borrow ends here
<anon>:8 fn main() {
<anon>:9 let mut foo = Foo;
<anon>:10 let loan = foo.mutate_and_share();
<anon>:11 foo.share();
<anon>:12 }

^

What happened? Well, we got the exact same reasoning as we did for Example 2 in the previous
section (section 4, page 32). We desugar the program and we get the following:

struct Foo;

impl Foo {
fn mutate_and_share<'a>(&'a mut self) -> &'a Self { &'a *self }
fn share<'a>(&'a self) {}

}
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fn main() {
'b: {

let mut foo: Foo = Foo;
'c: {

let loan: &'c Foo = Foo::mutate_and_share::<'c>(&'c mut foo);
'd: {

Foo::share::<'d>(&'d foo);
}

}
}

}

The lifetime system is forced to extend the &mut foo to have lifetime 'c, due to the lifetime
of loan and mutate_and_share’s signature. Then when we try to call share, and it sees we’re
trying to alias that &'c mut foo and blows up in our face!

This program is clearly correct according to the reference semantics we actually care about, but
the lifetime system is too coarse-grained to handle that.

TODO: other common problems? SEME regions stuff, mostly?

Lifetime Elision

In order to make common patterns more ergonomic, Rust allows lifetimes to be elided in function
signatures.

A lifetime position is anywhere you can write a lifetime in a type:

&'a T
&'a mut T
T<'a>

Lifetime positions can appear as either “input” or “output”:

• For fn definitions, input refers to the types of the formal arguments in the fn definition,
while output refers to result types. So fn foo(s: &str) -> (&str, &str) has elided one
lifetime in input position and two lifetimes in output position. Note that the input positions
of a fn method definition do not include the lifetimes that occur in the method’s impl header
(nor lifetimes that occur in the trait header, for a default method).

• In the future, it should be possible to elide impl headers in the same manner.

Elision rules are as follows:

• Each elided lifetime in input position becomes a distinct lifetime parameter.

• If there is exactly one input lifetime position (elided or not), that lifetime is assigned to all
elided output lifetimes.
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• If there are multiple input lifetime positions, but one of them is &self or &mut self, the
lifetime of self is assigned to all elided output lifetimes.

• Otherwise, it is an error to elide an output lifetime.

Examples:

fn print(s: &str); // elided
fn print<'a>(s: &'a str); // expanded

fn debug(lvl: uint, s: &str); // elided
fn debug<'a>(lvl: uint, s: &'a str); // expanded

fn substr(s: &str, until: uint) -> &str; // elided
fn substr<'a>(s: &'a str, until: uint) -> &'a str; // expanded

fn get_str() -> &str; // ILLEGAL

fn frob(s: &str, t: &str) -> &str; // ILLEGAL

fn get_mut(&mut self) -> &mut T; // elided
fn get_mut<'a>(&'a mut self) -> &'a mut T; // expanded

fn args<T: ToCStr>(&mut self, args: &[T]) -> &mut Command // elided
fn args<'a, 'b, T: ToCStr>(&'a mut self, args: &'b [T]) -> &'a mut Command // expanded

fn new(buf: &mut [u8]) -> BufWriter; // elided
fn new<'a>(buf: &'a mut [u8]) -> BufWriter<'a> // expanded

Unbounded Lifetimes

Unsafe code can often end up producing references or lifetimes out of thin air. Such lifetimes
come into the world as unbounded. The most common source of this is dereferencing a raw
pointer, which produces a reference with an unbounded lifetime. Such a lifetime becomes as big
as context demands. This is in fact more powerful than simply becoming 'static, because for
instance &'static &'a T will fail to typecheck, but the unbound lifetime will perfectly mold into
&'a &'a T as needed. However for most intents and purposes, such an unbounded lifetime can
be regarded as 'static.
Almost no reference is 'static, so this is probably wrong. transmute and transmute_copy are the
two other primary offenders. One should endeavor to bound an unbounded lifetime as quick as
possible, especially across function boundaries.
Given a function, any output lifetimes that don’t derive from inputs are unbounded. For instance:

fn get_str<'a>() -> &'a str;

will produce an &str with an unbounded lifetime. The easiest way to avoid unbounded lifetimes
is to use lifetime elision at the function boundary. If an output lifetime is elided, then it must
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be bounded by an input lifetime. Of course it might be bounded by the wrong lifetime, but this
will usually just cause a compiler error, rather than allow memory safety to be trivially violated.

Within a function, bounding lifetimes is more error-prone. The safest and easiest way to bound
a lifetime is to return it from a function with a bound lifetime. However if this is unacceptable,
the reference can be placed in a location with a specific lifetime. Unfortunately it’s impossible
to name all lifetimes involved in a function.

Higher-Rank Trait Bounds

Rust’s Fn traits are a little bit magic. For instance, we can write the following code:

struct Closure<F> {
data: (u8, u16),
func: F,

}

impl<F> Closure<F>
where F: Fn(&(u8, u16)) -> &u8,

{
fn call(&self) -> &u8 {

(self.func)(&self.data)
}

}

fn do_it(data: &(u8, u16)) -> &u8 { &data.0 }

fn main() {
let clo = Closure { data: (0, 1), func: do_it };
println!("{}", clo.call());

}

If we try to naively desugar this code in the same way that we did in the lifetimes section, we
run into some trouble:

struct Closure<F> {
data: (u8, u16),
func: F,

}

impl<F> Closure<F>
// where F: Fn(&'??? (u8, u16)) -> &'??? u8,

{
fn call<'a>(&'a self) -> &'a u8 {

(self.func)(&self.data)
}

}
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fn do_it<'b>(data: &'b (u8, u16)) -> &'b u8 { &'b data.0 }

fn main() {
'x: {

let clo = Closure { data: (0, 1), func: do_it };
println!("{}", clo.call());

}
}

How on earth are we supposed to express the lifetimes on F’s trait bound? We need to provide
some lifetime there, but the lifetime we care about can’t be named until we enter the body of
call! Also, that isn’t some fixed lifetime; call works with any lifetime &self happens to have at
that point.

This job requires The Magic of Higher-Rank Trait Bounds (HRTBs). The way we desugar this
is as follows:

where for<'a> F: Fn(&'a (u8, u16)) -> &'a u8,

(Where Fn(a, b, c) -> d is itself just sugar for the unstable real Fn trait)

for<'a> can be read as “for all choices of 'a”, and basically produces an infinite list of trait
bounds that F must satisfy. Intense. There aren’t many places outside of the Fn traits where we
encounter HRTBs, and even for those we have a nice magic sugar for the common cases.

Subtyping and Variance

Although Rust doesn’t have any notion of structural inheritance, it does include subtyping. In
Rust, subtyping derives entirely from lifetimes. Since lifetimes are scopes, we can partially order
them based on the contains (outlives) relationship. We can even express this as a generic bound.

Subtyping on lifetimes is in terms of that relationship: if 'a: 'b (“a contains b” or “a outlives
b”), then 'a is a subtype of 'b. This is a large source of confusion, because it seems intuitively
backwards to many: the bigger scope is a subtype of the smaller scope.

This does in fact make sense, though. The intuitive reason for this is that if you expect an &'a
u8, then it’s totally fine for me to hand you an &'static u8, in the same way that if you expect
an Animal in Java, it’s totally fine for me to hand you a Cat. Cats are just Animals and more,
just as 'static is just 'a and more.

(Note, the subtyping relationship and typed-ness of lifetimes is a fairly arbitrary construct that
some disagree with. However it simplifies our analysis to treat lifetimes and types uniformly.)

Higher-ranked lifetimes are also subtypes of every concrete lifetime. This is because taking an
arbitrary lifetime is strictly more general than taking a specific one.

Variance

Variance is where things get a bit complicated.



38 CHAPTER 4. OWNERSHIP

Variance is a property that type constructors have with respect to their arguments. A type
constructor in Rust is a generic type with unbound arguments. For instance Vec is a type
constructor that takes a T and returns a Vec<T>. & and &mut are type constructors that take two
inputs: a lifetime, and a type to point to.
A type constructor’s variance is how the subtyping of its inputs affects the subtyping of its
outputs. There are two kinds of variance in Rust:

• F is variant over T if T being a subtype of U implies F<T> is a subtype of F<U> (subtyping
“passes through”)

• F is invariant over T otherwise (no subtyping relation can be derived)

(For those of you who are familiar with variance from other languages, what we refer to as
“just” variance is in fact covariance. Rust has contravariance for functions. The future of
contravariance is uncertain and it may be scrapped. For now, fn(T) is contravariant in T, which
is used in matching methods in trait implementations to the trait definition. Traits don’t have
inferred variance, so Fn(T) is invariant in T).
Some important variances:

• &'a T is variant over 'a and T (as is *const T by metaphor)
• &'a mut T is variant over 'a but invariant over T
• Fn(T) -> U is invariant over T, but variant over U
• Box, Vec, and all other collections are variant over the types of their contents
• UnsafeCell<T>, Cell<T>, RefCell<T>, Mutex<T> and all other interior mutability types are

invariant over T (as is *mut T by metaphor)

To understand why these variances are correct and desirable, we will consider several examples.
We have already covered why &'a T should be variant over 'a when introducing subtyping: it’s
desirable to be able to pass longer-lived things where shorter-lived things are needed.
Similar reasoning applies to why it should be variant over T. It is reasonable to be able to pass
&&'static str where an &&'a str is expected. The additional level of indirection does not change
the desire to be able to pass longer lived things where shorted lived things are expected.
However this logic doesn’t apply to &mut. To see why &mut should be invariant over T, consider
the following code:

fn overwrite<T: Copy>(input: &mut T, new: &mut T) {
*input = *new;

}

fn main() {
let mut forever_str: &'static str = "hello";
{

let string = String::from("world");
overwrite(&mut forever_str, &mut &*string);

}
// Oops, printing free'd memory
println!("{}", forever_str);

}
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The signature of overwrite is clearly valid: it takes mutable references to two values of the same
type, and overwrites one with the other. If &mut T was variant over T, then &mut &'static str
would be a subtype of &mut &'a str, since &'static str is a subtype of &'a str. Therefore the
lifetime of forever_str would successfully be “shrunk” down to the shorter lifetime of string, and
overwrite would be called successfully. string would subsequently be dropped, and forever_str
would point to freed memory when we print it! Therefore &mut should be invariant.
This is the general theme of variance vs invariance: if variance would allow you to store a
short-lived value into a longer-lived slot, then you must be invariant.
However it is sound for &'a mut T to be variant over 'a. The key difference between 'a and T is
that 'a is a property of the reference itself, while T is something the reference is borrowing. If
you change T’s type, then the source still remembers the original type. However if you change
the lifetime’s type, no one but the reference knows this information, so it’s fine. Put another
way: &'a mut T owns 'a, but only borrows T.
Box and Vec are interesting cases because they’re variant, but you can definitely store values in
them! This is where Rust gets really clever: it’s fine for them to be variant because you can
only store values in them via a mutable reference! The mutable reference makes the whole type
invariant, and therefore prevents you from smuggling a short-lived type into them.
Being variant allows Box and Vec to be weakened when shared immutably. So you can pass a
&Box<&'static str> where a &Box<&'a str> is expected.
However what should happen when passing by-value is less obvious. It turns out that, yes, you
can use subtyping when passing by-value. That is, this works:

fn get_box<'a>(str: &'a str) -> Box<&'a str> {
// string literals are `&'static str`s
Box::new("hello")

}

Weakening when you pass by-value is fine because there’s no one else who “remembers” the old
lifetime in the Box. The reason a variant &mut was trouble was because there’s always someone
else who remembers the original subtype: the actual owner.
The invariance of the cell types can be seen as follows: & is like an &mut for a cell, because you
can still store values in them through an &. Therefore cells must be invariant to avoid lifetime
smuggling.
Fn is the most subtle case because it has mixed variance. To see why Fn(T) -> U should be
invariant over T, consider the following function signature:

// 'a is derived from some parent scope
fn foo(&'a str) -> usize;

This signature claims that it can handle any &str that lives at least as long as 'a. Now if this
signature was variant over &'a str, that would mean

fn foo(&'static str) -> usize;

could be provided in its place, as it would be a subtype. However this function has a stronger
requirement: it says that it can only handle &'static strs, and nothing else. Giving &'a strs to
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it would be unsound, as it’s free to assume that what it’s given lives forever. Therefore functions
are not variant over their arguments.

To see why Fn(T) -> U should be variant over U, consider the following function signature:

// 'a is derived from some parent scope
fn foo(usize) -> &'a str;

This signature claims that it will return something that outlives 'a. It is therefore completely
reasonable to provide

fn foo(usize) -> &'static str;

in its place. Therefore functions are variant over their return type.

*const has the exact same semantics as &, so variance follows. *mut on the other hand can
dereference to an &mut whether shared or not, so it is marked as invariant just like cells.

This is all well and good for the types the standard library provides, but how is variance deter-
mined for type that you define? A struct, informally speaking, inherits the variance of its fields.
If a struct Foo has a generic argument A that is used in a field a, then Foo’s variance over A is
exactly a’s variance. However this is complicated if A is used in multiple fields.

• If all uses of A are variant, then Foo is variant over A
• Otherwise, Foo is invariant over A

use std::cell::Cell;

struct Foo<'a, 'b, A: 'a, B: 'b, C, D, E, F, G, H> {
a: &'a A, // variant over 'a and A
b: &'b mut B, // variant over 'b and invariant over B
c: *const C, // variant over C
d: *mut D, // invariant over D
e: Vec<E>, // variant over E
f: Cell<F>, // invariant over F
g: G, // variant over G
h1: H, // would also be variant over H except...
h2: Cell<H>, // invariant over H, because invariance wins

}

Drop Check

We have seen how lifetimes provide us some fairly simple rules for ensuring that we never read
dangling references. However up to this point we have only ever interacted with the outlives
relationship in an inclusive manner. That is, when we talked about 'a: 'b, it was ok for 'a to
live exactly as long as 'b. At first glance, this seems to be a meaningless distinction. Nothing ever
gets dropped at the same time as another, right? This is why we used the following desugaring
of let statements:
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let x;
let y;

{
let x;
{

let y;
}

}

Each creates its own scope, clearly establishing that one drops before the other. However, what
if we do the following?

let (x, y) = (vec![], vec![]);

Does either value strictly outlive the other? The answer is in fact no, neither value strictly
outlives the other. Of course, one of x or y will be dropped before the other, but the actual order
is not specified. Tuples aren’t special in this regard; composite structures just don’t guarantee
their destruction order as of Rust 1.0.

We could specify this for the fields of built-in composites like tuples and structs. However, what
about something like Vec? Vec has to manually drop its elements via pure-library code. In
general, anything that implements Drop has a chance to fiddle with its innards during its final
death knell. Therefore the compiler can’t sufficiently reason about the actual destruction order
of the contents of any type that implements Drop.

So why do we care? We care because if the type system isn’t careful, it could accidentally make
dangling pointers. Consider the following simple program:

struct Inspector<'a>(&'a u8);

fn main() {
let (inspector, days);
days = Box::new(1);
inspector = Inspector(&days);

}

This program is totally sound and compiles today. The fact that days does not strictly outlive
inspector doesn’t matter. As long as the inspector is alive, so is days.

However if we add a destructor, the program will no longer compile!

struct Inspector<'a>(&'a u8);

impl<'a> Drop for Inspector<'a> {
fn drop(&mut self) {

println!("I was only {} days from retirement!", self.0);
}

}
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fn main() {
let (inspector, days);
days = Box::new(1);
inspector = Inspector(&days);
// Let's say `days` happens to get dropped first.
// Then when Inspector is dropped, it will try to read free'd memory!

}

<anon>:12:28: 12:32 error: `days` does not live long enough
<anon>:12 inspector = Inspector(&days);

^~~~
<anon>:9:11: 15:2 note: reference must be valid for the block at 9:10...
<anon>:9 fn main() {
<anon>:10 let (inspector, days);
<anon>:11 days = Box::new(1);
<anon>:12 inspector = Inspector(&days);
<anon>:13 // Let's say `days` happens to get dropped first.
<anon>:14 // Then when Inspector is dropped, it will try to read free'd memory!

...
<anon>:10:27: 15:2 note: ...but borrowed value is only valid for the block suffix foll
↳ owing statement 0 at 10:26
<anon>:10 let (inspector, days);
<anon>:11 days = Box::new(1);
<anon>:12 inspector = Inspector(&days);
<anon>:13 // Let's say `days` happens to get dropped first.
<anon>:14 // Then when Inspector is dropped, it will try to read free'd memory!
<anon>:15 }

Implementing Drop lets the Inspector execute some arbitrary code during its death. This means
it can potentially observe that types that are supposed to live as long as it does actually were
destroyed first.

Interestingly, only generic types need to worry about this. If they aren’t generic, then the only
lifetimes they can harbor are 'static, which will truly live forever. This is why this problem is
referred to as sound generic drop. Sound generic drop is enforced by the drop checker. As of this
writing, some of the finer details of how the drop checker validates types is totally up in the air.
However The Big Rule is the subtlety that we have focused on this whole section:

For a generic type to soundly implement drop, its generics arguments must strictly
outlive it.

Obeying this rule is (usually) necessary to satisfy the borrow checker; obeying it is sufficient but
not necessary to be sound. That is, if your type obeys this rule then it’s definitely sound to drop.

The reason that it is not always necessary to satisfy the above rule is that some Drop implemen-
tations will not access borrowed data even though their type gives them the capability for such
access.

For example, this variant of the above Inspector example will never accessed borrowed data:
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struct Inspector<'a>(&'a u8, &'static str);

impl<'a> Drop for Inspector<'a> {
fn drop(&mut self) {

println!("Inspector(_, {}) knows when *not* to inspect.", self.1);
}

}

fn main() {
let (inspector, days);
days = Box::new(1);
inspector = Inspector(&days, "gadget");
// Let's say `days` happens to get dropped first.
// Even when Inspector is dropped, its destructor will not access the
// borrowed `days`.

}

Likewise, this variant will also never access borrowed data:

use std::fmt;

struct Inspector<T: fmt::Display>(T, &'static str);

impl<T: fmt::Display> Drop for Inspector<T> {
fn drop(&mut self) {

println!("Inspector(_, {}) knows when *not* to inspect.", self.1);
}

}

fn main() {
let (inspector, days): (Inspector<&u8>, Box<u8>);
days = Box::new(1);
inspector = Inspector(&days, "gadget");
// Let's say `days` happens to get dropped first.
// Even when Inspector is dropped, its destructor will not access the
// borrowed `days`.

}

However, both of the above variants are rejected by the borrow checker during the analysis of fn
main, saying that days does not live long enough.

The reason is that the borrow checking analysis of main does not know about the internals of
each Inspector’s Drop implementation. As far as the borrow checker knows while it is analyzing
main, the body of an inspector’s destructor might access that borrowed data.

Therefore, the drop checker forces all borrowed data in a value to strictly outlive that value.
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An Escape Hatch

The precise rules that govern drop checking may be less restrictive in the future.

The current analysis is deliberately conservative and trivial; it forces all borrowed data in a value
to outlive that value, which is certainly sound.

Future versions of the language may make the analysis more precise, to reduce the number of
cases where sound code is rejected as unsafe. This would help address cases such as the two
Inspectors above that know not to inspect during destruction.

In the meantime, there is an unstable attribute that one can use to assert (unsafely) that a
generic type’s destructor is guaranteed to not access any expired data, even if its type gives it
the capability to do so.

That attribute is called unsafe_destructor_blind_to_params. To deploy it on the Inspector ex-
ample from above, we would write:

struct Inspector<'a>(&'a u8, &'static str);

impl<'a> Drop for Inspector<'a> {
#[unsafe_destructor_blind_to_params]
fn drop(&mut self) {

println!("Inspector(_, {}) knows when *not* to inspect.", self.1);
}

}

This attribute has the word unsafe in it because the compiler is not checking the implicit assertion
that no potentially expired data (e.g. self.0 above) is accessed.

It is sometimes obvious that no such access can occur, like the case above. However, when dealing
with a generic type parameter, such access can occur indirectly. Examples of such indirect access
are:

• invoking a callback,
• via a trait method call.

(Future changes to the language, such as impl specialization, may add other avenues for such
indirect access.)

Here is an example of invoking a callback:

struct Inspector<T>(T, &'static str, Box<for <'r> fn(&'r T) -> String>);

impl<T> Drop for Inspector<T> {
fn drop(&mut self) {

// The `self.2` call could access a borrow e.g. if `T` is `&'a _`.
println!("Inspector({}, {}) unwittingly inspects expired data.",

(self.2)(&self.0), self.1);
}

}
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Here is an example of a trait method call:

use std::fmt;

struct Inspector<T: fmt::Display>(T, &'static str);

impl<T: fmt::Display> Drop for Inspector<T> {
fn drop(&mut self) {

// There is a hidden call to `<T as Display>::fmt` below, which
// could access a borrow e.g. if `T` is `&'a _`
println!("Inspector({}, {}) unwittingly inspects expired data.",

self.0, self.1);
}

}

And of course, all of these accesses could be further hidden within some other method invoked
by the destructor, rather than being written directly within it.

In all of the above cases where the &'a u8 is accessed in the destructor, adding the #[unsafe_-
destructor_blind_to_params] attribute makes the type vulnerable to misuse that the borrower
checker will not catch, inviting havoc. It is better to avoid adding the attribute.

Is that all about drop checker?

It turns out that when writing unsafe code, we generally don’t need to worry at all about doing
the right thing for the drop checker. However there is one special case that you need to worry
about, which we will look at in the next section.

PhantomData

When working with unsafe code, we can often end up in a situation where types or lifetimes are
logically associated with a struct, but not actually part of a field. This most commonly occurs
with lifetimes. For instance, the Iter for &'a [T] is (approximately) defined as follows:

struct Iter<'a, T: 'a> {
ptr: *const T,
end: *const T,

}

However because 'a is unused within the struct’s body, it’s unbounded. Because of the troubles
this has historically caused, unbounded lifetimes and types are forbidden in struct definitions.
Therefore we must somehow refer to these types in the body. Correctly doing this is necessary
to have correct variance and drop checking.

We do this using PhantomData, which is a special marker type. PhantomData consumes no space,
but simulates a field of the given type for the purpose of static analysis. This was deemed to be
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less error-prone than explicitly telling the type-system the kind of variance that you want, while
also providing other useful such as the information needed by drop check.

Iter logically contains a bunch of &'a Ts, so this is exactly what we tell the PhantomData to
simulate:

use std::marker;

struct Iter<'a, T: 'a> {
ptr: *const T,
end: *const T,
_marker: marker::PhantomData<&'a T>,

}

and that’s it. The lifetime will be bounded, and your iterator will be variant over 'a and T.
Everything Just Works.

Another important example is Vec, which is (approximately) defined as follows:

struct Vec<T> {
data: *const T, // *const for variance!
len: usize,
cap: usize,

}

Unlike the previous example it appears that everything is exactly as we want. Every generic
argument to Vec shows up in the at least one field. Good to go!

Nope.

The drop checker will generously determine that Vec does not own any values of type T. This
will in turn make it conclude that it doesn’t need to worry about Vec dropping any T’s in
its destructor for determining drop check soundness. This will in turn allow people to create
unsoundness using Vec’s destructor.

In order to tell dropck that we do own values of type T, and therefore may drop some T’s when
we drop, we must add an extra PhantomData saying exactly that:

use std::marker;

struct Vec<T> {
data: *const T, // *const for covariance!
len: usize,
cap: usize,
_marker: marker::PhantomData<T>,

}

Raw pointers that own an allocation is such a pervasive pattern that the standard library made
a utility for itself called Unique<T> which:
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• wraps a *const T for variance
• includes a PhantomData<T>,
• auto-derives Send/Sync as if T was contained
• marks the pointer as NonZero for the null-pointer optimization

Splitting Borrows

The mutual exclusion property of mutable references can be very limiting when working with a
composite structure. The borrow checker understands some basic stuff, but will fall over pretty
easily. It does understand structs sufficiently to know that it’s possible to borrow disjoint fields
of a struct simultaneously. So this works today:

struct Foo {
a: i32,
b: i32,
c: i32,

}

let mut x = Foo {a: 0, b: 0, c: 0};
let a = &mut x.a;
let b = &mut x.b;
let c = &x.c;
*b += 1;
let c2 = &x.c;
*a += 10;
println!("{} {} {} {}", a, b, c, c2);

However borrowck doesn’t understand arrays or slices in any way, so this doesn’t work:

let mut x = [1, 2, 3];
let a = &mut x[0];
let b = &mut x[1];
println!("{} {}", a, b);

<anon>:4:14: 4:18 error: cannot borrow `x[..]` as mutable more than once at a time
<anon>:4 let b = &mut x[1];

^~~~
<anon>:3:14: 3:18 note: previous borrow of `x[..]` occurs here; the mutable borrow pre
↳ vents subsequent moves, borrows, or modification of `x[..]` until the borrow ends
<anon>:3 let a = &mut x[0];

^~~~
<anon>:6:2: 6:2 note: previous borrow ends here
<anon>:1 fn main() {
<anon>:2 let mut x = [1, 2, 3];
<anon>:3 let a = &mut x[0];
<anon>:4 let b = &mut x[1];
<anon>:5 println!("{} {}", a, b);
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<anon>:6 }
^

error: aborting due to 2 previous errors

While it was plausible that borrowck could understand this simple case, it’s pretty clearly hopeless
for borrowck to understand disjointness in general container types like a tree, especially if distinct
keys actually do map to the same value.

In order to “teach” borrowck that what we’re doing is ok, we need to drop down to unsafe
code. For instance, mutable slices expose a split_at_mut function that consumes the slice and
returns two mutable slices. One for everything to the left of the index, and one for everything to
the right. Intuitively we know this is safe because the slices don’t overlap, and therefore alias.
However the implementation requires some unsafety:

fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
let len = self.len();
let ptr = self.as_mut_ptr();
assert!(mid <= len);
unsafe {

(from_raw_parts_mut(ptr, mid),
from_raw_parts_mut(ptr.offset(mid as isize), len - mid))

}
}

This is actually a bit subtle. So as to avoid ever making two &mut’s to the same value, we
explicitly construct brand-new slices through raw pointers.

However more subtle is how iterators that yield mutable references work. The iterator trait is
defined as follows:

trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;
}

Given this definition, Self::Item has no connection to self. This means that we can call next
several times in a row, and hold onto all the results concurrently. This is perfectly fine for by-
value iterators, which have exactly these semantics. It’s also actually fine for shared references,
as they admit arbitrarily many references to the same thing (although the iterator needs to be
a separate object from the thing being shared).

But mutable references make this a mess. At first glance, they might seem completely incompat-
ible with this API, as it would produce multiple mutable references to the same object!

However it actually does work, exactly because iterators are one-shot objects. Everything an
IterMut yields will be yielded at most once, so we don’t actually ever yield multiple mutable
references to the same piece of data.

Perhaps surprisingly, mutable iterators don’t require unsafe code to be implemented for many
types!
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For instance here’s a singly linked list:

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
elem: T,
next: Link<T>,

}

pub struct LinkedList<T> {
head: Link<T>,

}

pub struct IterMut<'a, T: 'a>(Option<&'a mut Node<T>>);

impl<T> LinkedList<T> {
fn iter_mut(&mut self) -> IterMut<T> {

IterMut(self.head.as_mut().map(|node| &mut **node))
}

}

impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;

fn next(&mut self) -> Option<Self::Item> {
self.0.take().map(|node| {

self.0 = node.next.as_mut().map(|node| &mut **node);
&mut node.elem

})
}

}

Here’s a mutable slice:

use std::mem;

pub struct IterMut<'a, T: 'a>(&'a mut[T]);

impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;

fn next(&mut self) -> Option<Self::Item> {
let slice = mem::replace(&mut self.0, &mut []);
if slice.is_empty() { return None; }

let (l, r) = slice.split_at_mut(1);
self.0 = r;
l.get_mut(0)

}
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}

impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
fn next_back(&mut self) -> Option<Self::Item> {

let slice = mem::replace(&mut self.0, &mut []);
if slice.is_empty() { return None; }

let new_len = slice.len() - 1;
let (l, r) = slice.split_at_mut(new_len);
self.0 = l;
r.get_mut(0)

}
}

And here’s a binary tree:

use std::collections::VecDeque;

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
elem: T,
left: Link<T>,
right: Link<T>,

}

pub struct Tree<T> {
root: Link<T>,

}

struct NodeIterMut<'a, T: 'a> {
elem: Option<&'a mut T>,
left: Option<&'a mut Node<T>>,
right: Option<&'a mut Node<T>>,

}

enum State<'a, T: 'a> {
Elem(&'a mut T),
Node(&'a mut Node<T>),

}

pub struct IterMut<'a, T: 'a>(VecDeque<NodeIterMut<'a, T>>);

impl<T> Tree<T> {
pub fn iter_mut(&mut self) -> IterMut<T> {

let mut deque = VecDeque::new();
self.root.as_mut().map(|root| deque.push_front(root.iter_mut()));
IterMut(deque)

}
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}

impl<T> Node<T> {
pub fn iter_mut(&mut self) -> NodeIterMut<T> {

NodeIterMut {
elem: Some(&mut self.elem),
left: self.left.as_mut().map(|node| &mut **node),
right: self.right.as_mut().map(|node| &mut **node),

}
}

}

impl<'a, T> Iterator for NodeIterMut<'a, T> {
type Item = State<'a, T>;

fn next(&mut self) -> Option<Self::Item> {
match self.left.take() {

Some(node) => Some(State::Node(node)),
None => match self.elem.take() {

Some(elem) => Some(State::Elem(elem)),
None => match self.right.take() {

Some(node) => Some(State::Node(node)),
None => None,

}
}

}
}

}

impl<'a, T> DoubleEndedIterator for NodeIterMut<'a, T> {
fn next_back(&mut self) -> Option<Self::Item> {

match self.right.take() {
Some(node) => Some(State::Node(node)),
None => match self.elem.take() {

Some(elem) => Some(State::Elem(elem)),
None => match self.left.take() {

Some(node) => Some(State::Node(node)),
None => None,

}
}

}
}

}

impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;
fn next(&mut self) -> Option<Self::Item> {
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loop {
match self.0.front_mut().and_then(|node_it| node_it.next()) {

Some(State::Elem(elem)) => return Some(elem),
Some(State::Node(node)) => self.0.push_front(node.iter_mut()),
None => if let None = self.0.pop_front() { return None },

}
}

}
}

impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
fn next_back(&mut self) -> Option<Self::Item> {

loop {
match self.0.back_mut().and_then(|node_it| node_it.next_back()) {

Some(State::Elem(elem)) => return Some(elem),
Some(State::Node(node)) => self.0.push_back(node.iter_mut()),
None => if let None = self.0.pop_back() { return None },

}
}

}
}

All of these are completely safe and work on stable Rust! This ultimately falls out of the simple
struct case we saw before: Rust understands that you can safely split a mutable reference into
subfields. We can then encode permanently consuming a reference via Options (or in the case of
slices, replacing with an empty slice).



5
Type Conversions

At the end of the day, everything is just a pile of bits somewhere, and type systems are just there
to help us use those bits right. There are two common problems with typing bits: needing to
reinterpret those exact bits as a different type, and needing to change the bits to have equivalent
meaning for a different type. Because Rust encourages encoding important properties in the type
system, these problems are incredibly pervasive. As such, Rust consequently gives you several
ways to solve them.

First we’ll look at the ways that Safe Rust gives you to reinterpret values. The most trivial way
to do this is to just destructure a value into its constituent parts and then build a new type out
of them. e.g.

struct Foo {
x: u32,
y: u16,

}

struct Bar {
a: u32,
b: u16,

}

fn reinterpret(foo: Foo) -> Bar {
let Foo { x, y } = foo;
Bar { a: x, b: y }

}

But this is, at best, annoying. For common conversions, Rust provides more ergonomic alterna-
tives.
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Coercions

Types can implicitly be coerced to change in certain contexts. These changes are generally just
weakening of types, largely focused around pointers and lifetimes. They mostly exist to make
Rust “just work” in more cases, and are largely harmless.

Here’s all the kinds of coercion:

Coercion is allowed between the following types:

• Transitivity: T_1 to T_3 where T_1 coerces to T_2 and T_2 coerces to T_3
• Pointer Weakening:

– &mut T to &T
– *mut T to *const T
– &T to *const T
– &mut T to *mut T

• Unsizing: T to U if T implements CoerceUnsized<U>

CoerceUnsized<Pointer<U>> for Pointer<T> where T: Unsize<U> is implemented for all pointer
types (including smart pointers like Box and Rc). Unsize is only implemented automatically,
and enables the following transformations:

• [T; n] => [T]
• T => Trait where T: Trait
• Foo<..., T, ...> => Foo<..., U, ...> where:

– T: Unsize<U>
– Foo is a struct
– Only the last field of Foo has type T
– T is not part of the type of any other fields

Coercions occur at a coercion site. Any location that is explicitly typed will cause a coercion to
its type. If inference is necessary, the coercion will not be performed. Exhaustively, the coercion
sites for an expression e to type U are:

• let statements, statics, and consts: let x: U = e
• Arguments to functions: takes_a_U(e)
• Any expression that will be returned: fn foo() -> U { e }
• Struct literals: Foo { some_u: e }
• Array literals: let x: [U; 10] = [e, ..]
• Tuple literals: let x: (U, ..) = (e, ..)
• The last expression in a block: let x: U = { ..; e }

Note that we do not perform coercions when matching traits (except for receivers, see below). If
there is an impl for some type U and T coerces to U, that does not constitute an implementation
for T. For example, the following will not type check, even though it is OK to coerce t to &T and
there is an impl for &T:
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trait Trait {}

fn foo<X: Trait>(t: X) {}

impl<'a> Trait for &'a i32 {}

fn main() {
let t: &mut i32 = &mut 0;
foo(t);

}

<anon>:10:5: 10:8 error: the trait bound `&mut i32 : Trait` is not satisfied [E0277]
<anon>:10 foo(t);

^~~

The Dot Operator

The dot operator will perform a lot of magic to convert types. It will perform auto-referencing,
auto-dereferencing, and coercion until types match.

TODO: steal information from http://stackoverflow.com/questions/28519997/what-are-rusts-
exact-auto-dereferencing-rules/28552082#28552082

Casts

Casts are a superset of coercions: every coercion can be explicitly invoked via a cast. However
some conversions require a cast. While coercions are pervasive and largely harmless, these “true
casts” are rare and potentially dangerous. As such, casts must be explicitly invoked using the as
keyword: expr as Type.

True casts generally revolve around raw pointers and the primitive numeric types. Even though
they’re dangerous, these casts are infallible at runtime. If a cast triggers some subtle corner case
no indication will be given that this occurred. The cast will simply succeed. That said, casts
must be valid at the type level, or else they will be prevented statically. For instance, 7u8 as
bool will not compile.

That said, casts aren’t unsafe because they generally can’t violate memory safety on their own.
For instance, converting an integer to a raw pointer can very easily lead to terrible things.
However the act of creating the pointer itself is safe, because actually using a raw pointer is
already marked as unsafe.

Here’s an exhaustive list of all the true casts. For brevity, we will use * to denote either a *const
or *mut, and integer to denote any integral primitive:

• *T as *U where T, U: Sized
• *T as *U TODO: explain unsized situation
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• *T as integer
• integer as *T
• number as number
• C-like-enum as integer
• bool as integer
• char as integer
• u8 as char
• &[T; n] as *const T
• fn as *T where T: Sized
• fn as integer

Note that lengths are not adjusted when casting raw slices - *const [u16] as *const [u8] creates
a slice that only includes half of the original memory.

Casting is not transitive, that is, even if e as U1 as U2 is a valid expression, e as U2 is not
necessarily so.

For numeric casts, there are quite a few cases to consider:

• casting between two integers of the same size (e.g. i32 -> u32) is a no-op
• casting from a larger integer to a smaller integer (e.g. u32 -> u8) will truncate
• casting from a smaller integer to a larger integer (e.g. u8 -> u32) will

– zero-extend if the source is unsigned
– sign-extend if the source is signed

• casting from a float to an integer will round the float towards zero
– NOTE: currently this will cause Undefined Behavior if the rounded value

cannot be represented by the target integer type1. This includes Inf and NaN.
This is a bug and will be fixed.

• casting from an integer to float will produce the floating point representation of the integer,
rounded if necessary (rounding strategy unspecified)

• casting from an f32 to an f64 is perfect and lossless
• casting from an f64 to an f32 will produce the closest possible value (rounding strategy

unspecified)
– NOTE: currently this will cause Undefined Behavior if the value is finite

but larger or smaller than the largest or smallest finite value representable
by f322. This is a bug and will be fixed.

Transmutes

Get out of our way type system! We’re going to reinterpret these bits or die trying! Even though
this book is all about doing things that are unsafe, I really can’t emphasize that you should
deeply think about finding Another Way than the operations covered in this section. This is
really, truly, the most horribly unsafe thing you can do in Rust. The railguards here are dental
floss.

1https://github.com/rust-lang/rust/issues/10184
2https://github.com/rust-lang/rust/issues/15536

https://github.com/rust-lang/rust/issues/10184
https://github.com/rust-lang/rust/issues/15536
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mem::transmute<T, U> takes a value of type T and reinterprets it to have type U. The only restric-
tion is that the T and U are verified to have the same size. The ways to cause Undefined Behavior
with this are mind boggling.

• First and foremost, creating an instance of any type with an invalid state is going to cause
arbitrary chaos that can’t really be predicted.

• Transmute has an overloaded return type. If you do not specify the return type it may
produce a surprising type to satisfy inference.

• Making a primitive with an invalid value is UB
• Transmuting between non-repr(C) types is UB
• Transmuting an & to &mut is UB

– Transmuting an & to &mut is always UB
– No you can’t do it
– No you’re not special

• Transmuting to a reference without an explicitly provided lifetime produces an [unbounded
lifetime]

mem::transmute_copy<T, U> somehow manages to be even more wildly unsafe than this. It copies
size_of<U> bytes out of an &T and interprets them as a U. The size check that mem::transmute
has is gone (as it may be valid to copy out a prefix), though it is Undefined Behavior for U to be
larger than T.

Also of course you can get most of the functionality of these functions using pointer casts.
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6
Uninitialized Memory

All runtime-allocated memory in a Rust program begins its life as uninitialized. In this state the
value of the memory is an indeterminate pile of bits that may or may not even reflect a valid
state for the type that is supposed to inhabit that location of memory. Attempting to interpret
this memory as a value of any type will cause Undefined Behavior. Do Not Do This.

Rust provides mechanisms to work with uninitialized memory in checked (safe) and unchecked
(unsafe) ways.

Checked

Like C, all stack variables in Rust are uninitialized until a value is explicitly assigned to them.
Unlike C, Rust statically prevents you from ever reading them until you do:

fn main() {
let x: i32;
println!("{}", x);

}

src/main.rs:3:20: 3:21 error: use of possibly uninitialized variable: `x`
src/main.rs:3 println!("{}", x);

^

This is based off of a basic branch analysis: every branch must assign a value to x before it is
first used. Interestingly, Rust doesn’t require the variable to be mutable to perform a delayed
initialization if every branch assigns exactly once. However the analysis does not take advantage
of constant analysis or anything like that. So this compiles:
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fn main() {
let x: i32;

if true {
x = 1;

} else {
x = 2;

}

println!("{}", x);
}

but this doesn’t:

fn main() {
let x: i32;
if true {

x = 1;
}
println!("{}", x);

}

src/main.rs:6:17: 6:18 error: use of possibly uninitialized variable: `x`
src/main.rs:6 println!("{}", x);

while this does:

fn main() {
let x: i32;
if true {

x = 1;
println!("{}", x);

}
// Don't care that there are branches where it's not initialized
// since we don't use the value in those branches

}

Of course, while the analysis doesn’t consider actual values, it does have a relatively sophisticated
understanding of dependencies and control flow. For instance, this works:

let x: i32;

loop {
// Rust doesn't understand that this branch will be taken unconditionally,
// because it relies on actual values.
if true {

// But it does understand that it will only be taken once because
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// we unconditionally break out of it. Therefore `x` doesn't
// need to be marked as mutable.
x = 0;
break;

}
}
// It also knows that it's impossible to get here without reaching the break.
// And therefore that `x` must be initialized here!
println!("{}", x);

If a value is moved out of a variable, that variable becomes logically uninitialized if the type of
the value isn’t Copy. That is:

fn main() {
let x = 0;
let y = Box::new(0);
let z1 = x; // x is still valid because i32 is Copy
let z2 = y; // y is now logically uninitialized because Box isn't Copy

}

However reassigning y in this example would require y to be marked as mutable, as a Safe Rust
program could observe that the value of y changed:

fn main() {
let mut y = Box::new(0);
let z = y; // y is now logically uninitialized because Box isn't Copy
y = Box::new(1); // reinitialize y

}

Otherwise it’s like y is a brand new variable.

Drop Flags

The examples in the previous section introduce an interesting problem for Rust. We have seen
that it’s possible to conditionally initialize, deinitialize, and reinitialize locations of memory
totally safely. For Copy types, this isn’t particularly notable since they’re just a random pile of
bits. However types with destructors are a different story: Rust needs to know whether to call
a destructor whenever a variable is assigned to, or a variable goes out of scope. How can it do
this with conditional initialization?

Note that this is not a problem that all assignments need worry about. In particular, assigning
through a dereference unconditionally drops, and assigning in a let unconditionally doesn’t drop:

let mut x = Box::new(0); // let makes a fresh variable, so never need to drop
let y = &mut x;
*y = Box::new(1); // Deref assumes the referent is initialized, so always drops
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This is only a problem when overwriting a previously initialized variable or one of its subfields.

It turns out that Rust actually tracks whether a type should be dropped or not at runtime. As
a variable becomes initialized and uninitialized, a drop flag for that variable is toggled. When a
variable might need to be dropped, this flag is evaluated to determine if it should be dropped.

Of course, it is often the case that a value’s initialization state can be statically known at every
point in the program. If this is the case, then the compiler can theoretically generate more
efficient code! For instance, straight- line code has such static drop semantics:

let mut x = Box::new(0); // x was uninit; just overwrite.
let mut y = x; // y was uninit; just overwrite and make x uninit.
x = Box::new(0); // x was uninit; just overwrite.
y = x; // y was init; Drop y, overwrite it, and make x uninit!

// y goes out of scope; y was init; Drop y!
// x goes out of scope; x was uninit; do nothing.

Similarly, branched code where all branches have the same behavior with respect to initialization
has static drop semantics:

let mut x = Box::new(0); // x was uninit; just overwrite.
if condition {

drop(x) // x gets moved out; make x uninit.
} else {

println!("{}", x);
drop(x) // x gets moved out; make x uninit.

}
x = Box::new(0); // x was uninit; just overwrite.

// x goes out of scope; x was init; Drop x!

However code like this requires runtime information to correctly Drop:

let x;
if condition {

x = Box::new(0); // x was uninit; just overwrite.
println!("{}", x);

}
// x goes out of scope; x might be uninit;
// check the flag!

Of course, in this case it’s trivial to retrieve static drop semantics:

if condition {
let x = Box::new(0);
println!("{}", x);

}

As of Rust 1.0, the drop flags are actually not-so-secretly stashed in a hidden field of any type that
implements Drop. Rust sets the drop flag by overwriting the entire value with a particular bit
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pattern. This is pretty obviously Not The Fastest and causes a bunch of trouble with optimizing
code. It’s legacy from a time when you could do much more complex conditional initialization.

As such work is currently under way to move the flags out onto the stack frame where they more
reasonably belong. Unfortunately, this work will take some time as it requires fairly substantial
changes to the compiler.

Regardless, Rust programs don’t need to worry about uninitialized values on the stack for cor-
rectness. Although they might care for performance. Thankfully, Rust makes it easy to take
control here! Uninitialized values are there, and you can work with them in Safe Rust, but you’re
never in danger.

Unchecked

One interesting exception to this rule is working with arrays. Safe Rust doesn’t permit you to
partially initialize an array. When you initialize an array, you can either set every value to the
same thing with let x = [val; N], or you can specify each member individually with let x =
[val1, val2, val3]. Unfortunately this is pretty rigid, especially if you need to initialize your
array in a more incremental or dynamic way.

Unsafe Rust gives us a powerful tool to handle this problem: mem::uninitialized. This function
pretends to return a value when really it does nothing at all. Using it, we can convince Rust that
we have initialized a variable, allowing us to do trickier things with conditional and incremental
initialization.

Unfortunately, this opens us up to all kinds of problems. Assignment has a different meaning to
Rust based on whether it believes that a variable is initialized or not. If it’s believed uninitialized,
then Rust will semantically just memcopy the bits over the uninitialized ones, and do nothing
else. However if Rust believes a value to be initialized, it will try to Drop the old value! Since
we’ve tricked Rust into believing that the value is initialized, we can no longer safely use normal
assignment.

This is also a problem if you’re working with a raw system allocator, which returns a pointer to
uninitialized memory.

To handle this, we must use the ptr module. In particular, it provides three functions that allow
us to assign bytes to a location in memory without dropping the old value: write, copy, and
copy_nonoverlapping.

• ptr::write(ptr, val) takes a val and moves it into the address pointed to by ptr.
• ptr::copy(src, dest, count) copies the bits that count T’s would occupy from src to dest.

(this is equivalent to memmove – note that the argument order is reversed!)
• ptr::copy_nonoverlapping(src, dest, count) does what copy does, but a little faster on

the assumption that the two ranges of memory don’t overlap. (this is equivalent to memcpy
– note that the argument order is reversed!)

It should go without saying that these functions, if misused, will cause serious havoc or just
straight up Undefined Behavior. The only things that these functions themselves require is that
the locations you want to read and write are allocated. However the ways writing arbitrary bits
to arbitrary locations of memory can break things are basically uncountable!
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Putting this all together, we get the following:

use std::mem;
use std::ptr;

// size of the array is hard-coded but easy to change. This means we can't
// use [a, b, c] syntax to initialize the array, though!
const SIZE: usize = 10;

let mut x: [Box<u32>; SIZE];

unsafe {
// convince Rust that x is Totally Initialized
x = mem::uninitialized();
for i in 0..SIZE {

// very carefully overwrite each index without reading it
// NOTE: exception safety is not a concern; Box can't panic
ptr::write(&mut x[i], Box::new(i as u32));

}
}

println!("{:?}", x);

It’s worth noting that you don’t need to worry about ptr::write-style shenanigans with types
which don’t implement Drop or contain Drop types, because Rust knows not to try to drop them.
Similarly you should be able to assign to fields of partially initialized structs directly if those
fields don’t contain any Drop types.

However when working with uninitialized memory you need to be ever-vigilant for Rust trying to
drop values you make like this before they’re fully initialized. Every control path through that
variable’s scope must initialize the value before it ends, if it has a destructor. This includes code
panicking (chapter 8, page 75).

And that’s about it for working with uninitialized memory! Basically nothing anywhere expects
to be handed uninitialized memory, so if you’re going to pass it around at all, be sure to be really
careful.
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Ownership Based Resource Management

OBRM (AKA RAII: Resource Acquisition Is Initialization) is something you’ll interact with a
lot in Rust. Especially if you use the standard library.

Roughly speaking the pattern is as follows: to acquire a resource, you create an object that
manages it. To release the resource, you simply destroy the object, and it cleans up the resource
for you. The most common “resource” this pattern manages is simply memory. Box, Rc, and
basically everything in std::collections is a convenience to enable correctly managing memory.
This is particularly important in Rust because we have no pervasive GC to rely on for memory
management. Which is the point, really: Rust is about control. However we are not limited to
just memory. Pretty much every other system resource like a thread, file, or socket is exposed
through this kind of API.

Constructors

There is exactly one way to create an instance of a user-defined type: name it, and initialize all
its fields at once:

struct Foo {
a: u8,
b: u32,
c: bool,

}

enum Bar {
X(u32),
Y(bool),

}

struct Unit;
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let foo = Foo { a: 0, b: 1, c: false };
let bar = Bar::X(0);
let empty = Unit;

That’s it. Every other way you make an instance of a type is just calling a totally vanilla function
that does some stuff and eventually bottoms out to The One True Constructor.

Unlike C++, Rust does not come with a slew of built-in kinds of constructor. There are no
Copy, Default, Assignment, Move, or whatever constructors. The reasons for this are varied, but
it largely boils down to Rust’s philosophy of being explicit.

Move constructors are meaningless in Rust because we don’t enable types to “care” about their
location in memory. Every type must be ready for it to be blindly memcopied to somewhere else
in memory. This means pure on-the-stack-but- still-movable intrusive linked lists are simply not
happening in Rust (safely).

Assignment and copy constructors similarly don’t exist because move semantics are the only
semantics in Rust. At most x = y just moves the bits of y into the x variable. Rust does
provide two facilities for providing C++’s copy- oriented semantics: Copy and Clone. Clone
is our moral equivalent of a copy constructor, but it’s never implicitly invoked. You have to
explicitly call clone on an element you want to be cloned. Copy is a special case of Clone
where the implementation is just “copy the bits”. Copy types are implicitly cloned whenever
they’re moved, but because of the definition of Copy this just means not treating the old copy
as uninitialized – a no-op.

While Rust provides a Default trait for specifying the moral equivalent of a default constructor,
it’s incredibly rare for this trait to be used. This is because variables aren’t implicitly initialized
(chapter 6, page 59). Default is basically only useful for generic programming. In concrete
contexts, a type will provide a static new method for any kind of “default” constructor. This has
no relation to new in other languages and has no special meaning. It’s just a naming convention.

TODO: talk about “placement new”?

Destructors

What the language does provide is full-blown automatic destructors through the Drop trait, which
provides the following method:

fn drop(&mut self);

This method gives the type time to somehow finish what it was doing.

After drop is run, Rust will recursively try to drop all of the fields of self.

This is a convenience feature so that you don’t have to write “destructor boilerplate” to drop
children. If a struct has no special logic for being dropped other than dropping its children, then
it means Drop doesn’t need to be implemented at all!

There is no stable way to prevent this behavior in Rust 1.0.
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Note that taking &mut self means that even if you could suppress recursive Drop, Rust will
prevent you from e.g. moving fields out of self. For most types, this is totally fine.

For instance, a custom implementation of Box might write Drop like this:

#![feature(alloc, heap_api, drop_in_place, unique)]

extern crate alloc;

use std::ptr::{drop_in_place, Unique};
use std::mem;

use alloc::heap;

struct Box<T>{ ptr: Unique<T> }

impl<T> Drop for Box<T> {
fn drop(&mut self) {

unsafe {
drop_in_place(*self.ptr);
heap::deallocate((*self.ptr) as *mut u8,

mem::size_of::<T>(),
mem::align_of::<T>());

}
}

}

and this works fine because when Rust goes to drop the ptr field it just sees a [Unique] that has
no actual Drop implementation. Similarly nothing can use-after-free the ptr because when drop
exits, it becomes inaccessible.

However this wouldn’t work:

#![feature(alloc, heap_api, drop_in_place, unique)]

extern crate alloc;

use std::ptr::{drop_in_place, Unique};
use std::mem;

use alloc::heap;

struct Box<T>{ ptr: Unique<T> }

impl<T> Drop for Box<T> {
fn drop(&mut self) {

unsafe {
drop_in_place(*self.ptr);
heap::deallocate((*self.ptr) as *mut u8,

mem::size_of::<T>(),
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mem::align_of::<T>());
}

}
}

struct SuperBox<T> { my_box: Box<T> }

impl<T> Drop for SuperBox<T> {
fn drop(&mut self) {

unsafe {
// Hyper-optimized: deallocate the box's contents for it
// without `drop`ing the contents
heap::deallocate((*self.my_box.ptr) as *mut u8,

mem::size_of::<T>(),
mem::align_of::<T>());

}
}

}

After we deallocate the box’s ptr in SuperBox’s destructor, Rust will happily proceed to tell the
box to Drop itself and everything will blow up with use-after-frees and double-frees.

Note that the recursive drop behavior applies to all structs and enums regardless of whether they
implement Drop. Therefore something like

struct Boxy<T> {
data1: Box<T>,
data2: Box<T>,
info: u32,

}

will have its data1 and data2’s fields destructors whenever it “would” be dropped, even though
it itself doesn’t implement Drop. We say that such a type needs Drop, even though it is not itself
Drop.

Similarly,

enum Link {
Next(Box<Link>),
None,

}

will have its inner Box field dropped if and only if an instance stores the Next variant.

In general this works really nicely because you don’t need to worry about adding/removing drops
when you refactor your data layout. Still there’s certainly many valid usecases for needing to do
trickier things with destructors.

The classic safe solution to overriding recursive drop and allowing moving out of Self during drop
is to use an Option:
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#![feature(alloc, heap_api, drop_in_place, unique)]

extern crate alloc;

use std::ptr::{drop_in_place, Unique};
use std::mem;

use alloc::heap;

struct Box<T>{ ptr: Unique<T> }

impl<T> Drop for Box<T> {
fn drop(&mut self) {

unsafe {
drop_in_place(*self.ptr);
heap::deallocate((*self.ptr) as *mut u8,

mem::size_of::<T>(),
mem::align_of::<T>());

}
}

}

struct SuperBox<T> { my_box: Option<Box<T>> }

impl<T> Drop for SuperBox<T> {
fn drop(&mut self) {

unsafe {
// Hyper-optimized: deallocate the box's contents for it
// without `drop`ing the contents. Need to set the `box`
// field as `None` to prevent Rust from trying to Drop it.
let my_box = self.my_box.take().unwrap();
heap::deallocate((*my_box.ptr) as *mut u8,

mem::size_of::<T>(),
mem::align_of::<T>());

mem::forget(my_box);
}

}
}

However this has fairly odd semantics: you’re saying that a field that should always be Some
may be None, just because that happens in the destructor. Of course this conversely makes a lot
of sense: you can call arbitrary methods on self during the destructor, and this should prevent
you from ever doing so after deinitializing the field. Not that it will prevent you from producing
any other arbitrarily invalid state in there.

On balance this is an ok choice. Certainly what you should reach for by default. However, in the
future we expect there to be a first-class way to announce that a field shouldn’t be automatically
dropped.
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Leaking

Ownership-based resource management is intended to simplify composition. You acquire re-
sources when you create the object, and you release the resources when it gets destroyed. Since
destruction is handled for you, it means you can’t forget to release the resources, and it happens
as soon as possible! Surely this is perfect and all of our problems are solved.

Everything is terrible and we have new and exotic problems to try to solve.

Many people like to believe that Rust eliminates resource leaks. In practice, this is basically
true. You would be surprised to see a Safe Rust program leak resources in an uncontrolled way.

However from a theoretical perspective this is absolutely not the case, no matter how you look
at it. In the strictest sense, “leaking” is so abstract as to be unpreventable. It’s quite trivial
to initialize a collection at the start of a program, fill it with tons of objects with destructors,
and then enter an infinite event loop that never refers to it. The collection will sit around
uselessly, holding on to its precious resources until the program terminates (at which point all
those resources would have been reclaimed by the OS anyway).

We may consider a more restricted form of leak: failing to drop a value that is unreachable. Rust
also doesn’t prevent this. In fact Rust has a function for doing this: mem::forget. This function
consumes the value it is passed and then doesn’t run its destructor.

In the past mem::forget was marked as unsafe as a sort of lint against using it, since failing to call
a destructor is generally not a well-behaved thing to do (though useful for some special unsafe
code). However this was generally determined to be an untenable stance to take: there are many
ways to fail to call a destructor in safe code. The most famous example is creating a cycle of
reference-counted pointers using interior mutability.

It is reasonable for safe code to assume that destructor leaks do not happen, as any program
that leaks destructors is probably wrong. However unsafe code cannot rely on destructors to be
run in order to be safe. For most types this doesn’t matter: if you leak the destructor then the
type is by definition inaccessible, so it doesn’t matter, right? For instance, if you leak a Box<u8>
then you waste some memory but that’s hardly going to violate memory-safety.

However where we must be careful with destructor leaks are proxy types. These are types which
manage access to a distinct object, but don’t actually own it. Proxy objects are quite rare.
Proxy objects you’ll need to care about are even rarer. However we’ll focus on three interesting
examples in the standard library:

• vec::Drain
• Rc
• thread::scoped::JoinGuard

Drain

drain is a collections API that moves data out of the container without consuming the container.
This enables us to reuse the allocation of a Vec after claiming ownership over all of its contents.
It produces an iterator (Drain) that returns the contents of the Vec by-value.

Now, consider Drain in the middle of iteration: some values have been moved out, and others
haven’t. This means that part of the Vec is now full of logically uninitialized data! We could



LEAKING 71

backshift all the elements in the Vec every time we remove a value, but this would have pretty
catastrophic performance consequences.

Instead, we would like Drain to fix the Vec’s backing storage when it is dropped. It should run
itself to completion, backshift any elements that weren’t removed (drain supports subranges),
and then fix Vec’s len. It’s even unwinding-safe! Easy!

Now consider the following:

let mut vec = vec![Box::new(0); 4];

{
// start draining, vec can no longer be accessed
let mut drainer = vec.drain(..);

// pull out two elements and immediately drop them
drainer.next();
drainer.next();

// get rid of drainer, but don't call its destructor
mem::forget(drainer);

}

// Oops, vec[0] was dropped, we're reading a pointer into free'd memory!
println!("{}", vec[0]);

This is pretty clearly Not Good. Unfortunately, we’re kind of stuck between a rock and a hard
place: maintaining consistent state at every step has an enormous cost (and would negate any
benefits of the API). Failing to maintain consistent state gives us Undefined Behavior in safe
code (making the API unsound).

So what can we do? Well, we can pick a trivially consistent state: set the Vec’s len to be 0 when
we start the iteration, and fix it up if necessary in the destructor. That way, if everything executes
like normal we get the desired behavior with minimal overhead. But if someone has the audacity
to mem::forget us in the middle of the iteration, all that does is leak even more (and possibly leave
the Vec in an unexpected but otherwise consistent state). Since we’ve accepted that mem::forget
is safe, this is definitely safe. We call leaks causing more leaks a leak amplification.

Rc

Rc is an interesting case because at first glance it doesn’t appear to be a proxy value at all. After
all, it manages the data it points to, and dropping all the Rcs for a value will drop that value.
Leaking an Rc doesn’t seem like it would be particularly dangerous. It will leave the refcount
permanently incremented and prevent the data from being freed or dropped, but that seems just
like Box, right?

Nope.

Let’s consider a simplified implementation of Rc:
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struct Rc<T> {
ptr: *mut RcBox<T>,

}

struct RcBox<T> {
data: T,
ref_count: usize,

}

impl<T> Rc<T> {
fn new(data: T) -> Self {

unsafe {
// Wouldn't it be nice if heap::allocate worked like this?
let ptr = heap::allocate::<RcBox<T>>();
ptr::write(ptr, RcBox {

data: data,
ref_count: 1,

});
Rc { ptr: ptr }

}
}

fn clone(&self) -> Self {
unsafe {

(*self.ptr).ref_count += 1;
}
Rc { ptr: self.ptr }

}
}

impl<T> Drop for Rc<T> {
fn drop(&mut self) {

unsafe {
(*self.ptr).ref_count -= 1;
if (*self.ptr).ref_count == 0 {

// drop the data and then free it
ptr::read(self.ptr);
heap::deallocate(self.ptr);

}
}

}
}

This code contains an implicit and subtle assumption: ref_count can fit in a usize, because there
can’t be more than usize::MAX Rcs in memory. However this itself assumes that the ref_count
accurately reflects the number of Rcs in memory, which we know is false with mem::forget. Using
mem::forget we can overflow the ref_count, and then get it down to 0 with outstanding Rcs.
Then we can happily use-after-free the inner data. Bad Bad Not Good.
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This can be solved by just checking the ref_count and doing something. The standard library’s
stance is to just abort, because your program has become horribly degenerate. Also oh my gosh
it’s such a ridiculous corner case.

thread::scoped::JoinGuard

The thread::scoped API intends to allow threads to be spawned that reference data on their
parent’s stack without any synchronization over that data by ensuring the parent joins the
thread before any of the shared data goes out of scope.

pub fn scoped<'a, F>(f: F) -> JoinGuard<'a>
where F: FnOnce() + Send + 'a

Here f is some closure for the other thread to execute. Saying that F: Send +'a is saying that it
closes over data that lives for 'a, and it either owns that data or the data was Sync (implying
&data is Send).

Because JoinGuard has a lifetime, it keeps all the data it closes over borrowed in the parent
thread. This means the JoinGuard can’t outlive the data that the other thread is working on.
When the JoinGuard does get dropped it blocks the parent thread, ensuring the child terminates
before any of the closed-over data goes out of scope in the parent.

Usage looked like:

let mut data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
{

let guards = vec![];
for x in &mut data {

// Move the mutable reference into the closure, and execute
// it on a different thread. The closure has a lifetime bound
// by the lifetime of the mutable reference `x` we store in it.
// The guard that is returned is in turn assigned the lifetime
// of the closure, so it also mutably borrows `data` as `x` did.
// This means we cannot access `data` until the guard goes away.
let guard = thread::scoped(move || {

*x *= 2;
});
// store the thread's guard for later
guards.push(guard);

}
// All guards are dropped here, forcing the threads to join
// (this thread blocks here until the others terminate).
// Once the threads join, the borrow expires and the data becomes
// accessible again in this thread.

}
// data is definitely mutated here.

In principle, this totally works! Rust’s ownership system perfectly ensures it! …except it relies
on a destructor being called to be safe.
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let mut data = Box::new(0);
{

let guard = thread::scoped(|| {
// This is at best a data race. At worst, it's also a use-after-free.
*data += 1;

});
// Because the guard is forgotten, expiring the loan without blocking this
// thread.
mem::forget(guard);

}
// So the Box is dropped here while the scoped thread may or may not be trying
// to access it.

Dang. Here the destructor running was pretty fundamental to the API, and it had to be scrapped
in favor of a completely different design.
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Unwinding

Rust has a tiered error-handling scheme:

• If something might reasonably be absent, Option is used.
• If something goes wrong and can reasonably be handled, Result is used.
• If something goes wrong and cannot reasonably be handled, the thread panics.
• If something catastrophic happens, the program aborts.

Option and Result are overwhelmingly preferred in most situations, especially since they can be
promoted into a panic or abort at the API user’s discretion. Panics cause the thread to halt
normal execution and unwind its stack, calling destructors as if every function instantly returned.

As of 1.0, Rust is of two minds when it comes to panics. In the long-long-ago, Rust was much
more like Erlang. Like Erlang, Rust had lightweight tasks, and tasks were intended to kill
themselves with a panic when they reached an untenable state. Unlike an exception in Java or
C++, a panic could not be caught at any time. Panics could only be caught by the owner of the
task, at which point they had to be handled or that task would itself panic.

Unwinding was important to this story because if a task’s destructors weren’t called, it would
cause memory and other system resources to leak. Since tasks were expected to die during normal
execution, this would make Rust very poor for long-running systems!

As the Rust we know today came to be, this style of programming grew out of fashion in the
push for less-and-less abstraction. Light-weight tasks were killed in the name of heavy-weight
OS threads. Still, on stable Rust as of 1.0 panics can only be caught by the parent thread. This
means catching a panic requires spinning up an entire OS thread! This unfortunately stands in
conflict to Rust’s philosophy of zero-cost abstractions.

There is an unstable API called catch_panic that enables catching a panic without spawning a
thread. Still, we would encourage you to only do this sparingly. In particular, Rust’s current
unwinding implementation is heavily optimized for the “doesn’t unwind” case. If a program
doesn’t unwind, there should be no runtime cost for the program being ready to unwind. As
a consequence, actually unwinding will be more expensive than in e.g. Java. Don’t build your
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programs to unwind under normal circumstances. Ideally, you should only panic for programming
errors or extreme problems.

Rust’s unwinding strategy is not specified to be fundamentally compatible with any other lan-
guage’s unwinding. As such, unwinding into Rust from another language, or unwinding into
another language from Rust is Undefined Behavior. You must absolutely catch any panics at the
FFI boundary! What you do at that point is up to you, but something must be done. If you fail
to do this, at best, your application will crash and burn. At worst, your application won’t crash
and burn, and will proceed with completely clobbered state.

Exception Safety

Although programs should use unwinding sparingly, there’s a lot of code that can panic. If you
unwrap a None, index out of bounds, or divide by 0, your program will panic. On debug builds,
every arithmetic operation can panic if it overflows. Unless you are very careful and tightly
control what code runs, pretty much everything can unwind, and you need to be ready for it.

Being ready for unwinding is often referred to as exception safety in the broader programming
world. In Rust, there are two levels of exception safety that one may concern themselves with:

• In unsafe code, we must be exception safe to the point of not violating memory safety.
We’ll call this minimal exception safety.

• In safe code, it is good to be exception safe to the point of your program doing the right
thing. We’ll call this maximal exception safety.

As is the case in many places in Rust, Unsafe code must be ready to deal with bad Safe code when
it comes to unwinding. Code that transiently creates unsound states must be careful that a panic
does not cause that state to be used. Generally this means ensuring that only non-panicking
code is run while these states exist, or making a guard that cleans up the state in the case of a
panic. This does not necessarily mean that the state a panic witnesses is a fully coherent state.
We need only guarantee that it’s a safe state.

Most Unsafe code is leaf-like, and therefore fairly easy to make exception-safe. It controls all the
code that runs, and most of that code can’t panic. However it is not uncommon for Unsafe code
to work with arrays of temporarily uninitialized data while repeatedly invoking caller-provided
code. Such code needs to be careful and consider exception safety.

Vec::push_all

Vec::push_all is a temporary hack to get extending a Vec by a slice reliably efficient without
specialization. Here’s a simple implementation:

impl<T: Clone> Vec<T> {
fn push_all(&mut self, to_push: &[T]) {

self.reserve(to_push.len());
unsafe {

// can't overflow because we just reserved this
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self.set_len(self.len() + to_push.len());

for (i, x) in to_push.iter().enumerate() {
self.ptr().offset(i as isize).write(x.clone());

}
}

}
}

We bypass push in order to avoid redundant capacity and len checks on the Vec that we definitely
know has capacity. The logic is totally correct, except there’s a subtle problem with our code:
it’s not exception-safe! set_len, offset, and write are all fine; clone is the panic bomb we
over-looked.

Clone is completely out of our control, and is totally free to panic. If it does, our function will
exit early with the length of the Vec set too large. If the Vec is looked at or dropped, uninitialized
memory will be read!

The fix in this case is fairly simple. If we want to guarantee that the values we did clone are
dropped, we can set the len every loop iteration. If we just want to guarantee that uninitialized
memory can’t be observed, we can set the len after the loop.

BinaryHeap::sift_up

Bubbling an element up a heap is a bit more complicated than extending a Vec. The pseudocode
is as follows:

bubble_up(heap, index):
while index != 0 && heap[index] < heap[parent(index)]:

heap.swap(index, parent(index))
index = parent(index)

A literal transcription of this code to Rust is totally fine, but has an annoying performance
characteristic: the self element is swapped over and over again uselessly. We would rather have
the following:

bubble_up(heap, index):
let elem = heap[index]
while index != 0 && element < heap[parent(index)]:

heap[index] = heap[parent(index)]
index = parent(index)

heap[index] = elem

This code ensures that each element is copied as little as possible (it is in fact necessary that
elem be copied twice in general). However it now exposes some exception safety trouble! At
all times, there exists two copies of one value. If we panic in this function something will be
double-dropped. Unfortunately, we also don’t have full control of the code: that comparison is
user-defined!
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Unlike Vec, the fix isn’t as easy here. One option is to break the user-defined code and the unsafe
code into two separate phases:

bubble_up(heap, index):
let end_index = index;
while end_index != 0 && heap[end_index] < heap[parent(end_index)]:

end_index = parent(end_index)

let elem = heap[index]
while index != end_index:

heap[index] = heap[parent(index)]
index = parent(index)

heap[index] = elem

If the user-defined code blows up, that’s no problem anymore, because we haven’t actually
touched the state of the heap yet. Once we do start messing with the heap, we’re working with
only data and functions that we trust, so there’s no concern of panics.

Perhaps you’re not happy with this design. Surely it’s cheating! And we have to do the complex
heap traversal twice! Alright, let’s bite the bullet. Let’s intermix untrusted and unsafe code for
reals.

If Rust had try and finally like in Java, we could do the following:

bubble_up(heap, index):
let elem = heap[index]
try:

while index != 0 && element < heap[parent(index)]:
heap[index] = heap[parent(index)]
index = parent(index)

finally:
heap[index] = elem

The basic idea is simple: if the comparison panics, we just toss the loose element in the logically
uninitialized index and bail out. Anyone who observes the heap will see a potentially inconsistent
heap, but at least it won’t cause any double-drops! If the algorithm terminates normally, then
this operation happens to coincide precisely with the how we finish up regardless.

Sadly, Rust has no such construct, so we’re going to need to roll our own! The way to do this
is to store the algorithm’s state in a separate struct with a destructor for the “finally” logic.
Whether we panic or not, that destructor will run and clean up after us.

struct Hole<'a, T: 'a> {
data: &'a mut [T],
/// `elt` is always `Some` from new until drop.
elt: Option<T>,
pos: usize,

}
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impl<'a, T> Hole<'a, T> {
fn new(data: &'a mut [T], pos: usize) -> Self {

unsafe {
let elt = ptr::read(&data[pos]);
Hole {

data: data,
elt: Some(elt),
pos: pos,

}
}

}

fn pos(&self) -> usize { self.pos }

fn removed(&self) -> &T { self.elt.as_ref().unwrap() }

unsafe fn get(&self, index: usize) -> &T { &self.data[index] }

unsafe fn move_to(&mut self, index: usize) {
let index_ptr: *const _ = &self.data[index];
let hole_ptr = &mut self.data[self.pos];
ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
self.pos = index;

}
}

impl<'a, T> Drop for Hole<'a, T> {
fn drop(&mut self) {

// fill the hole again
unsafe {

let pos = self.pos;
ptr::write(&mut self.data[pos], self.elt.take().unwrap());

}
}

}

impl<T: Ord> BinaryHeap<T> {
fn sift_up(&mut self, pos: usize) {

unsafe {
// Take out the value at `pos` and create a hole.
let mut hole = Hole::new(&mut self.data, pos);

while hole.pos() != 0 {
let parent = parent(hole.pos());
if hole.removed() <= hole.get(parent) { break }
hole.move_to(parent);

}
// Hole will be unconditionally filled here; panic or not!
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}
}

}

Poisoning

Although all unsafe code must ensure it has minimal exception safety, not all types ensure
maximal exception safety. Even if the type does, your code may ascribe additional meaning
to it. For instance, an integer is certainly exception-safe, but has no semantics on its own. It’s
possible that code that panics could fail to correctly update the integer, producing an inconsistent
program state.

This is usually fine, because anything that witnesses an exception is about to get destroyed. For
instance, if you send a Vec to another thread and that thread panics, it doesn’t matter if the Vec
is in a weird state. It will be dropped and go away forever. However some types are especially
good at smuggling values across the panic boundary.

These types may choose to explicitly poison themselves if they witness a panic. Poisoning doesn’t
entail anything in particular. Generally it just means preventing normal usage from proceeding.
The most notable example of this is the standard library’s Mutex type. A Mutex will poison
itself if one of its MutexGuards (the thing it returns when a lock is obtained) is dropped during
a panic. Any future attempts to lock the Mutex will return an Err or panic.

Mutex poisons not for true safety in the sense that Rust normally cares about. It poisons as
a safety-guard against blindly using the data that comes out of a Mutex that has witnessed a
panic while locked. The data in such a Mutex was likely in the middle of being modified, and
as such may be in an inconsistent or incomplete state. It is important to note that one cannot
violate memory safety with such a type if it is correctly written. After all, it must be minimally
exception-safe!

However if the Mutex contained, say, a BinaryHeap that does not actually have the heap property,
it’s unlikely that any code that uses it will do what the author intended. As such, the program
should not proceed normally. Still, if you’re double-plus-sure that you can do something with
the value, the Mutex exposes a method to get the lock anyway. It is safe, after all. Just maybe
nonsense.
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Concurrency

Rust as a language doesn’t really have an opinion on how to do concurrency or parallelism.
The standard library exposes OS threads and blocking sys-calls because everyone has those, and
they’re uniform enough that you can provide an abstraction over them in a relatively uncontro-
versial way. Message passing, green threads, and async APIs are all diverse enough that any
abstraction over them tends to involve trade-offs that we weren’t willing to commit to for 1.0.

However the way Rust models concurrency makes it relatively easy to design your own concur-
rency paradigm as a library and have everyone else’s code Just Work with yours. Just require
the right lifetimes and Send and Sync where appropriate and you’re off to the races. Or rather,
off to the… not… having… races.

Races

Safe Rust guarantees an absence of data races, which are defined as:

• two or more threads concurrently accessing a location of memory
• one of them is a write
• one of them is unsynchronized

A data race has Undefined Behavior, and is therefore impossible to perform in Safe Rust. Data
races are mostly prevented through rust’s ownership system: it’s impossible to alias a muta-
ble reference, so it’s impossible to perform a data race. Interior mutability makes this more
complicated, which is largely why we have the Send and Sync traits (see below).

However Rust does not prevent general race conditions.

This is pretty fundamentally impossible, and probably honestly undesirable. Your hardware is
racy, your OS is racy, the other programs on your computer are racy, and the world this all runs
in is racy. Any system that could genuinely claim to prevent all race conditions would be pretty
awful to use, if not just incorrect.
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So it’s perfectly “fine” for a Safe Rust program to get deadlocked or do something incredibly
stupid with incorrect synchronization. Obviously such a program isn’t very good, but Rust can
only hold your hand so far. Still, a race condition can’t violate memory safety in a Rust program
on its own. Only in conjunction with some other unsafe code can a race condition actually violate
memory safety. For instance:

use std::thread;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;

let data = vec![1, 2, 3, 4];
// Arc so that the memory the AtomicUsize is stored in still exists for
// the other thread to increment, even if we completely finish executing
// before it. Rust won't compile the program without it, because of the
// lifetime requirements of thread::spawn!
let idx = Arc::new(AtomicUsize::new(0));
let other_idx = idx.clone();

// `move` captures other_idx by-value, moving it into this thread
thread::spawn(move || {

// It's ok to mutate idx because this value
// is an atomic, so it can't cause a Data Race.
other_idx.fetch_add(10, Ordering::SeqCst);

});

// Index with the value loaded from the atomic. This is safe because we
// read the atomic memory only once, and then pass a copy of that value
// to the Vec's indexing implementation. This indexing will be correctly
// bounds checked, and there's no chance of the value getting changed
// in the middle. However our program may panic if the thread we spawned
// managed to increment before this ran. A race condition because correct
// program execution (panicking is rarely correct) depends on order of
// thread execution.
println!("{}", data[idx.load(Ordering::SeqCst)]);

use std::thread;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;

let data = vec![1, 2, 3, 4];

let idx = Arc::new(AtomicUsize::new(0));
let other_idx = idx.clone();

// `move` captures other_idx by-value, moving it into this thread
thread::spawn(move || {

// It's ok to mutate idx because this value
// is an atomic, so it can't cause a Data Race.
other_idx.fetch_add(10, Ordering::SeqCst);
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});

if idx.load(Ordering::SeqCst) < data.len() {
unsafe {

// Incorrectly loading the idx after we did the bounds check.
// It could have changed. This is a race condition, *and dangerous*
// because we decided to do `get_unchecked`, which is `unsafe`.
println!("{}", data.get_unchecked(idx.load(Ordering::SeqCst)));

}
}

Send and Sync

Not everything obeys inherited mutability, though. Some types allow you to multiply alias a
location in memory while mutating it. Unless these types use synchronization to manage this
access, they are absolutely not thread safe. Rust captures this through the Send and Sync traits.

• A type is Send if it is safe to send it to another thread.
• A type is Sync if it is safe to share between threads (&T is Send).

Send and Sync are fundamental to Rust’s concurrency story. As such, a substantial amount
of special tooling exists to make them work right. First and foremost, they’re [unsafe traits].
This means that they are unsafe to implement, and other unsafe code can assume that they are
correctly implemented. Since they’re marker traits (they have no associated items like methods),
correctly implemented simply means that they have the intrinsic properties an implementor
should have. Incorrectly implementing Send or Sync can cause Undefined Behavior.

Send and Sync are also automatically derived traits. This means that, unlike every other trait, if
a type is composed entirely of Send or Sync types, then it is Send or Sync. Almost all primitives
are Send and Sync, and as a consequence pretty much all types you’ll ever interact with are Send
and Sync.

Major exceptions include:

• raw pointers are neither Send nor Sync (because they have no safety guards).
• UnsafeCell isn’t Sync (and therefore Cell and RefCell aren’t).
• Rc isn’t Send or Sync (because the refcount is shared and unsynchronized).

Rc and UnsafeCell are very fundamentally not thread-safe: they enable unsynchronized shared
mutable state. However raw pointers are, strictly speaking, marked as thread-unsafe as more
of a lint. Doing anything useful with a raw pointer requires dereferencing it, which is already
unsafe. In that sense, one could argue that it would be “fine” for them to be marked as thread
safe.

However it’s important that they aren’t thread safe to prevent types that contain them from
being automatically marked as thread safe. These types have non-trivial untracked ownership,
and it’s unlikely that their author was necessarily thinking hard about thread safety. In the case
of Rc, we have a nice example of a type that contains a *mut that is definitely not thread safe.
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Types that aren’t automatically derived can simply implement them if desired:

struct MyBox(*mut u8);

unsafe impl Send for MyBox {}
unsafe impl Sync for MyBox {}

In the incredibly rare case that a type is inappropriately automatically derived to be Send or
Sync, then one can also unimplement Send and Sync:

#![feature(optin_builtin_traits)]

// I have some magic semantics for some synchronization primitive!
struct SpecialThreadToken(u8);

impl !Send for SpecialThreadToken {}
impl !Sync for SpecialThreadToken {}

Note that in and of itself it is impossible to incorrectly derive Send and Sync. Only types that
are ascribed special meaning by other unsafe code can possible cause trouble by being incorrectly
Send or Sync.
Most uses of raw pointers should be encapsulated behind a sufficient abstraction that Send and
Sync can be derived. For instance all of Rust’s standard collections are Send and Sync (when
they contain Send and Sync types) in spite of their pervasive use of raw pointers to manage
allocations and complex ownership. Similarly, most iterators into these collections are Send and
Sync because they largely behave like an & or &mut into the collection.
TODO: better explain what can or can’t be Send or Sync. Sufficient to appeal only to data
races?

Atomics

Rust pretty blatantly just inherits C11’s memory model for atomics. This is not due to this
model being particularly excellent or easy to understand. Indeed, this model is quite complex
and known to have several flaws1. Rather, it is a pragmatic concession to the fact that everyone is
pretty bad at modeling atomics. At very least, we can benefit from existing tooling and research
around C.
Trying to fully explain the model in this book is fairly hopeless. It’s defined in terms of madness-
inducing causality graphs that require a full book to properly understand in a practical way. If
you want all the nitty-gritty details, you should check out C’s specification (Section 7.17)2. Still,
we’ll try to cover the basics and some of the problems Rust developers face.
The C11 memory model is fundamentally about trying to bridge the gap between the semantics
we want, the optimizations compilers want, and the inconsistent chaos our hardware wants. We
would like to just write programs and have them do exactly what we said but, you know, fast.
Wouldn’t that be great?

1http://plv.mpi-sws.org/c11comp/popl15.pdf
2http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899

http://plv.mpi-sws.org/c11comp/popl15.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
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Compiler Reordering

Compilers fundamentally want to be able to do all sorts of crazy transformations to reduce data
dependencies and eliminate dead code. In particular, they may radically change the actual order
of events, or make events never occur! If we write something like

x = 1;
y = 3;
x = 2;

The compiler may conclude that it would be best if your program did

x = 2;
y = 3;

This has inverted the order of events and completely eliminated one event. From a single-
threaded perspective this is completely unobservable: after all the statements have executed we
are in exactly the same state. But if our program is multi-threaded, we may have been relying
on x to actually be assigned to 1 before y was assigned. We would like the compiler to be able
to make these kinds of optimizations, because they can seriously improve performance. On the
other hand, we’d also like to be able to depend on our program doing the thing we said.

Hardware Reordering

On the other hand, even if the compiler totally understood what we wanted and respected our
wishes, our hardware might instead get us in trouble. Trouble comes from CPUs in the form of
memory hierarchies. There is indeed a global shared memory space somewhere in your hardware,
but from the perspective of each CPU core it is so very far away and so very slow. Each CPU
would rather work with its local cache of the data and only go through all the anguish of talking
to shared memory only when it doesn’t actually have that memory in cache.

After all, that’s the whole point of the cache, right? If every read from the cache had to run
back to shared memory to double check that it hadn’t changed, what would the point be? The
end result is that the hardware doesn’t guarantee that events that occur in the same order on
one thread, occur in the same order on another thread. To guarantee this, we must issue special
instructions to the CPU telling it to be a bit less smart.

For instance, say we convince the compiler to emit this logic:

initial state: x = 0, y = 1

THREAD 1 THREAD2
y = 3; if x == 1 {
x = 1; y *= 2;

}

Ideally this program has 2 possible final states:
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• y = 3: (thread 2 did the check before thread 1 completed)
• y = 6: (thread 2 did the check after thread 1 completed)

However there’s a third potential state that the hardware enables:

• y = 2: (thread 2 saw x = 1, but not y = 3, and then overwrote y = 3)

It’s worth noting that different kinds of CPU provide different guarantees. It is common to
separate hardware into two categories: strongly-ordered and weakly- ordered. Most notably
x86/64 provides strong ordering guarantees, while ARM provides weak ordering guarantees.
This has two consequences for concurrent programming:

• Asking for stronger guarantees on strongly-ordered hardware may be cheap or even free
because they already provide strong guarantees unconditionally. Weaker guarantees may
only yield performance wins on weakly-ordered hardware.

• Asking for guarantees that are too weak on strongly-ordered hardware is more likely to
happen to work, even though your program is strictly incorrect. If possible, concurrent
algorithms should be tested on weakly-ordered hardware.

Data Accesses

The C11 memory model attempts to bridge the gap by allowing us to talk about the causality
of our program. Generally, this is by establishing a happens before relationship between parts of
the program and the threads that are running them. This gives the hardware and compiler room
to optimize the program more aggressively where a strict happens-before relationship isn’t estab-
lished, but forces them to be more careful where one is established. The way we communicate
these relationships are through data accesses and atomic accesses.

Data accesses are the bread-and-butter of the programming world. They are fundamentally
unsynchronized and compilers are free to aggressively optimize them. In particular, data accesses
are free to be reordered by the compiler on the assumption that the program is single-threaded.
The hardware is also free to propagate the changes made in data accesses to other threads as
lazily and inconsistently as it wants. Most critically, data accesses are how data races happen.
Data accesses are very friendly to the hardware and compiler, but as we’ve seen they offer awful
semantics to try to write synchronized code with. Actually, that’s too weak.

It is literally impossible to write correct synchronized code using only data accesses.

Atomic accesses are how we tell the hardware and compiler that our program is multi-threaded.
Each atomic access can be marked with an ordering that specifies what kind of relationship it
establishes with other accesses. In practice, this boils down to telling the compiler and hard-
ware certain things they can’t do. For the compiler, this largely revolves around re-ordering of
instructions. For the hardware, this largely revolves around how writes are propagated to other
threads. The set of orderings Rust exposes are:

• Sequentially Consistent (SeqCst)
• Release
• Acquire
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• Relaxed

(Note: We explicitly do not expose the C11 consume ordering)

TODO: negative reasoning vs positive reasoning? TODO: “can’t forget to synchronize”

Sequentially Consistent

Sequentially Consistent is the most powerful of all, implying the restrictions of all other orderings.
Intuitively, a sequentially consistent operation cannot be reordered: all accesses on one thread
that happen before and after a SeqCst access stay before and after it. A data-race-free program
that uses only sequentially consistent atomics and data accesses has the very nice property that
there is a single global execution of the program’s instructions that all threads agree on. This
execution is also particularly nice to reason about: it’s just an interleaving of each thread’s
individual executions. This does not hold if you start using the weaker atomic orderings.

The relative developer-friendliness of sequential consistency doesn’t come for free. Even on
strongly-ordered platforms sequential consistency involves emitting memory fences.

In practice, sequential consistency is rarely necessary for program correctness. However sequen-
tial consistency is definitely the right choice if you’re not confident about the other memory
orders. Having your program run a bit slower than it needs to is certainly better than it running
incorrectly! It’s also mechanically trivial to downgrade atomic operations to have a weaker con-
sistency later on. Just change SeqCst to Relaxed and you’re done! Of course, proving that this
transformation is correct is a whole other matter.

Acquire-Release

Acquire and Release are largely intended to be paired. Their names hint at their use case: they’re
perfectly suited for acquiring and releasing locks, and ensuring that critical sections don’t overlap.

Intuitively, an acquire access ensures that every access after it stays after it. However operations
that occur before an acquire are free to be reordered to occur after it. Similarly, a release access
ensures that every access before it stays before it. However operations that occur after a release
are free to be reordered to occur before it.

When thread A releases a location in memory and then thread B subsequently acquires the same
location in memory, causality is established. Every write that happened before A’s release will
be observed by B after its release. However no causality is established with any other threads.
Similarly, no causality is established if A and B access different locations in memory.

Basic use of release-acquire is therefore simple: you acquire a location of memory to begin the
critical section, and then release that location to end it. For instance, a simple spinlock might
look like:

use std::sync::Arc;
use std::sync::atomic::{AtomicBool, Ordering};
use std::thread;

fn main() {
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let lock = Arc::new(AtomicBool::new(false)); // value answers "am I locked?"

// ... distribute lock to threads somehow ...

// Try to acquire the lock by setting it to true
while lock.compare_and_swap(false, true, Ordering::Acquire) { }
// broke out of the loop, so we successfully acquired the lock!

// ... scary data accesses ...

// ok we're done, release the lock
lock.store(false, Ordering::Release);

}

On strongly-ordered platforms most accesses have release or acquire semantics, making release
and acquire often totally free. This is not the case on weakly-ordered platforms.

Relaxed

Relaxed accesses are the absolute weakest. They can be freely re-ordered and provide no happens-
before relationship. Still, relaxed operations are still atomic. That is, they don’t count as
data accesses and any read-modify-write operations done to them occur atomically. Relaxed
operations are appropriate for things that you definitely want to happen, but don’t particularly
otherwise care about. For instance, incrementing a counter can be safely done by multiple threads
using a relaxed fetch_add if you’re not using the counter to synchronize any other accesses.

There’s rarely a benefit in making an operation relaxed on strongly-ordered platforms, since they
usually provide release-acquire semantics anyway. However relaxed operations can be cheaper
on weakly-ordered platforms.
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Implementing Vec

To bring everything together, we’re going to write std::Vec from scratch. Because all the best
tools for writing unsafe code are unstable, this project will only work on nightly (as of Rust
1.9.0). With the exception of the allocator API, much of the unstable code we’ll use is expected
to be stabilized in a similar form as it is today.

However we will generally try to avoid unstable code where possible. In particular we won’t
use any intrinsics that could make a code a little bit nicer or efficient because intrinsics are
permanently unstable. Although many intrinsics do become stabilized elsewhere (std::ptr and
str::mem consist of many intrinsics).

Ultimately this means our implementation may not take advantage of all possible optimizations,
though it will be by no means naive. We will definitely get into the weeds over nitty-gritty
details, even when the problem doesn’t really merit it.

You wanted advanced. We’re gonna go advanced.

Layout

First off, we need to come up with the struct layout. A Vec has three parts: a pointer to the
allocation, the size of the allocation, and the number of elements that have been initialized.

Naively, this means we just want this design:

pub struct Vec<T> {
ptr: *mut T,
cap: usize,
len: usize,

}

And indeed this would compile. Unfortunately, it would be incorrect. First, the compiler will
give us too strict variance. So a &Vec<&'static str> couldn’t be used where an &Vec<&'a str>
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was expected. More importantly, it will give incorrect ownership information to the drop checker,
as it will conservatively assume we don’t own any values of type T. See the chapter on ownership
and lifetimes (chapter 4, page 25) for all the details on variance and drop check.
As we saw in the ownership chapter, we should use Unique<T> in place of *mut T when we have
a raw pointer to an allocation we own. Unique is unstable, so we’d like to not use it if possible,
though.
As a recap, Unique is a wrapper around a raw pointer that declares that:

• We are variant over T
• We may own a value of type T (for drop check)
• We are Send/Sync if T is Send/Sync
• We deref to *mut T (so it largely acts like a *mut in our code)
• Our pointer is never null (so Option<Vec<T>> is null-pointer-optimized)

We can implement all of the above requirements except for the last one in stable Rust:

use std::marker::PhantomData;
use std::ops::Deref;
use std::mem;

struct Unique<T> {
ptr: *const T, // *const for variance
_marker: PhantomData<T>, // For the drop checker

}

// Deriving Send and Sync is safe because we are the Unique owners
// of this data. It's like Unique<T> is "just" T.
unsafe impl<T: Send> Send for Unique<T> {}
unsafe impl<T: Sync> Sync for Unique<T> {}

impl<T> Unique<T> {
pub fn new(ptr: *mut T) -> Self {

Unique { ptr: ptr, _marker: PhantomData }
}

}

impl<T> Deref for Unique<T> {
type Target = *mut T;
fn deref(&self) -> &*mut T {

// There's no way to cast the *const to a *mut
// while also taking a reference. So we just
// transmute it since it's all "just pointers".
unsafe { mem::transmute(&self.ptr) }

}
}

Unfortunately the mechanism for stating that your value is non-zero is unstable and unlikely to
be stabilized soon. As such we’re just going to take the hit and use std’s Unique:
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#![feature(unique)]

use std::ptr::{Unique, self};

pub struct Vec<T> {
ptr: Unique<T>,
cap: usize,
len: usize,

}

If you don’t care about the null-pointer optimization, then you can use the stable code. How-
ever we will be designing the rest of the code around enabling the optimization. In particular,
Unique::new is unsafe to call, because putting null inside of it is Undefined Behavior. Our stable
Unique doesn’t need new to be unsafe because it doesn’t make any interesting guarantees about
its contents.

Allocating

Using Unique throws a wrench in an important feature of Vec (and indeed all of the std collec-
tions): an empty Vec doesn’t actually allocate at all. So if we can’t allocate, but also can’t put a
null pointer in ptr, what do we do in Vec::new? Well, we just put some other garbage in there!

This is perfectly fine because we already have cap == 0 as our sentinel for no allocation. We
don’t even need to handle it specially in almost any code because we usually need to check if cap
> len or len > 0 anyway. The traditional Rust value to put here is 0x01. The standard library
actually exposes this as alloc::heap::EMPTY. There are quite a few places where we’ll want to use
heap::EMPTY because there’s no real allocation to talk about but null would make the compiler
do bad things.

All of the heap API is totally unstable under the heap_api feature, though. We could trivially
define heap::EMPTY ourselves, but we’ll want the rest of the heap API anyway, so let’s just get
that dependency over with.

So:

#![feature(alloc, heap_api)]

use std::mem;

use alloc::heap::EMPTY;

impl<T> Vec<T> {
fn new() -> Self {

assert!(mem::size_of::<T>() != 0, "We're not ready to handle ZSTs");
unsafe {

// need to cast EMPTY to the actual ptr type we want, let
// inference handle it.
Vec { ptr: Unique::new(heap::EMPTY as *mut _), len: 0, cap: 0 }
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}
}

}

I slipped in that assert there because zero-sized types will require some special handling through-
out our code, and I want to defer the issue for now. Without this assert, some of our early drafts
will do some Very Bad Things.

Next we need to figure out what to actually do when we do want space. For that, we’ll need
to use the rest of the heap APIs. These basically allow us to talk directly to Rust’s allocator
(jemalloc by default).

We’ll also need a way to handle out-of-memory (OOM) conditions. The standard library calls
the abort intrinsic, which just calls an illegal instruction to crash the whole program. The reason
we abort and don’t panic is because unwinding can cause allocations to happen, and that seems
like a bad thing to do when your allocator just came back with “hey I don’t have any more
memory”.

Of course, this is a bit silly since most platforms don’t actually run out of memory in a conven-
tional way. Your operating system will probably kill the application by another means if you
legitimately start using up all the memory. The most likely way we’ll trigger OOM is by just
asking for ludicrous quantities of memory at once (e.g. half the theoretical address space). As
such it’s probably fine to panic and nothing bad will happen. Still, we’re trying to be like the
standard library as much as possible, so we’ll just kill the whole program.

We said we don’t want to use intrinsics, so doing exactly what std does is out. Instead, we’ll call
std::process::exit with some random number.

fn oom() {
::std::process::exit(-9999);

}

Okay, now we can write growing. Roughly, we want to have this logic:

if cap == 0:
allocate()
cap = 1

else:
reallocate()
cap *= 2

But Rust’s only supported allocator API is so low level that we’ll need to do a fair bit of extra
work. We also need to guard against some special conditions that can occur with really large
allocations or empty allocations.

In particular, ptr::offset will cause us a lot of trouble, because it has the semantics of LLVM’s
GEP inbounds instruction. If you’re fortunate enough to not have dealt with this instruction,
here’s the basic story with GEP: alias analysis, alias analysis, alias analysis. It’s super important
to an optimizing compiler to be able to reason about data dependencies and aliasing.

As a simple example, consider the following fragment of code:
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*x *= 7;
*y *= 3;

If the compiler can prove that x and y point to different locations in memory, the two operations
can in theory be executed in parallel (by e.g. loading them into different registers and working
on them independently). However the compiler can’t do this in general because if x and y point
to the same location in memory, the operations need to be done to the same value, and they
can’t just be merged afterwards.

When you use GEP inbounds, you are specifically telling LLVM that the offsets you’re about to
do are within the bounds of a single “allocated” entity. The ultimate payoff being that LLVM
can assume that if two pointers are known to point to two disjoint objects, all the offsets of those
pointers are also known to not alias (because you won’t just end up in some random place in
memory). LLVM is heavily optimized to work with GEP offsets, and inbounds offsets are the
best of all, so it’s important that we use them as much as possible.

So that’s what GEP’s about, how can it cause us trouble?

The first problem is that we index into arrays with unsigned integers, but GEP (and as a
consequence ptr::offset) takes a signed integer. This means that half of the seemingly valid
indices into an array will overflow GEP and actually go in the wrong direction! As such we
must limit all allocations to isize::MAX elements. This actually means we only need to worry
about byte-sized objects, because e.g. > isize::MAX u16s will truly exhaust all of the system’s
memory. However in order to avoid subtle corner cases where someone reinterprets some array
of < isize::MAX objects as bytes, std limits all allocations to isize::MAX bytes.

On all 64-bit targets that Rust currently supports we’re artificially limited to significantly less
than all 64 bits of the address space (modern x64 platforms only expose 48-bit addressing), so
we can rely on just running out of memory first. However on 32-bit targets, particularly those
with extensions to use more of the address space (PAE x86 or x32), it’s theoretically possible to
successfully allocate more than isize::MAX bytes of memory.

However since this is a tutorial, we’re not going to be particularly optimal here, and just uncon-
ditionally check, rather than use clever platform-specific cfgs.

The other corner-case we need to worry about is empty allocations. There will be two kinds of
empty allocations we need to worry about: cap = 0 for all T, and cap > 0 for zero-sized types.

These cases are tricky because they come down to what LLVM means by “allocated”. LLVM’s
notion of an allocation is significantly more abstract than how we usually use it. Because LLVM
needs to work with different languages’ semantics and custom allocators, it can’t really intimately
understand allocation. Instead, the main idea behind allocation is “doesn’t overlap with other
stuff”. That is, heap allocations, stack allocations, and globals don’t randomly overlap. Yep, it’s
about alias analysis. As such, Rust can technically play a bit fast and loose with the notion of
an allocation as long as it’s consistent.

Getting back to the empty allocation case, there are a couple of places where we want to offset
by 0 as a consequence of generic code. The question is then: is it consistent to do so? For
zero-sized types, we have concluded that it is indeed consistent to do a GEP inbounds offset by
an arbitrary number of elements. This is a runtime no-op because every element takes up no
space, and it’s fine to pretend that there’s infinite zero-sized types allocated at 0x01. No allocator
will ever allocate that address, because they won’t allocate 0x00 and they generally allocate to
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some minimal alignment higher than a byte. Also generally the whole first page of memory is
protected from being allocated anyway (a whole 4k, on many platforms).
However what about for positive-sized types? That one’s a bit trickier. In principle, you can
argue that offsetting by 0 gives LLVM no information: either there’s an element before the
address or after it, but it can’t know which. However we’ve chosen to conservatively assume that
it may do bad things. As such we will guard against this case explicitly.
Phew
Ok with all the nonsense out of the way, let’s actually allocate some memory:

fn grow(&mut self) {
// this is all pretty delicate, so let's say it's all unsafe
unsafe {

// current API requires us to specify size and alignment manually.
let align = mem::align_of::<T>();
let elem_size = mem::size_of::<T>();

let (new_cap, ptr) = if self.cap == 0 {
let ptr = heap::allocate(elem_size, align);
(1, ptr)

} else {
// as an invariant, we can assume that `self.cap < isize::MAX`,
// so this doesn't need to be checked.
let new_cap = self.cap * 2;
// Similarly this can't overflow due to previously allocating this
let old_num_bytes = self.cap * elem_size;

// check that the new allocation doesn't exceed `isize::MAX` at all
// regardless of the actual size of the capacity. This combines the
// `new_cap <= isize::MAX` and `new_num_bytes <= usize::MAX` checks
// we need to make. We lose the ability to allocate e.g. 2/3rds of
// the address space with a single Vec of i16's on 32-bit though.
// Alas, poor Yorick -- I knew him, Horatio.
assert!(old_num_bytes <= (::std::isize::MAX as usize) / 2,

"capacity overflow");

let new_num_bytes = old_num_bytes * 2;
let ptr = heap::reallocate(*self.ptr as *mut _,

old_num_bytes,
new_num_bytes,
align);

(new_cap, ptr)
};

// If allocate or reallocate fail, we'll get `null` back
if ptr.is_null() { oom(); }

self.ptr = Unique::new(ptr as *mut _);
self.cap = new_cap;
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}
}

Nothing particularly tricky here. Just computing sizes and alignments and doing some careful
multiplication checks.

Push and Pop

Alright. We can initialize. We can allocate. Let’s actually implement some functionality! Let’s
start with push. All it needs to do is check if we’re full to grow, unconditionally write to the next
index, and then increment our length.

To do the write we have to be careful not to evaluate the memory we want to write to. At worst,
it’s truly uninitialized memory from the allocator. At best it’s the bits of some old value we
popped off. Either way, we can’t just index to the memory and dereference it, because that will
evaluate the memory as a valid instance of T. Worse, foo[idx] = x will try to call drop on the
old value of foo[idx]!

The correct way to do this is with ptr::write, which just blindly overwrites the target address
with the bits of the value we provide. No evaluation involved.

For push, if the old len (before push was called) is 0, then we want to write to the 0th index. So
we should offset by the old len.

pub fn push(&mut self, elem: T) {
if self.len == self.cap { self.grow(); }

unsafe {
ptr::write(self.ptr.offset(self.len as isize), elem);

}

// Can't fail, we'll OOM first.
self.len += 1;

}

Easy! How about pop? Although this time the index we want to access is initialized, Rust won’t
just let us dereference the location of memory to move the value out, because that would leave
the memory uninitialized! For this we need ptr::read, which just copies out the bits from the
target address and interprets it as a value of type T. This will leave the memory at this address
logically uninitialized, even though there is in fact a perfectly good instance of T there.

For pop, if the old len is 1, we want to read out of the 0th index. So we should offset by the new
len.

pub fn pop(&mut self) -> Option<T> {
if self.len == 0 {

None
} else {
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self.len -= 1;
unsafe {

Some(ptr::read(self.ptr.offset(self.len as isize)))
}

}
}

Deallocating

Next we should implement Drop so that we don’t massively leak tons of resources. The easiest
way is to just call pop until it yields None, and then deallocate our buffer. Note that calling pop
is unneeded if T: !Drop. In theory we can ask Rust if T needs_drop and omit the calls to pop.
However in practice LLVM is really good at removing simple side-effect free code like this, so I
wouldn’t bother unless you notice it’s not being stripped (in this case it is).

We must not call heap::deallocate when self.cap == 0, as in this case we haven’t actually
allocated any memory.

impl<T> Drop for Vec<T> {
fn drop(&mut self) {

if self.cap != 0 {
while let Some(_) = self.pop() { }

let align = mem::align_of::<T>();
let elem_size = mem::size_of::<T>();
let num_bytes = elem_size * self.cap;
unsafe {

heap::deallocate(*self.ptr as *mut _, num_bytes, align);
}

}
}

}

Deref

Alright! We’ve got a decent minimal stack implemented. We can push, we can pop, and we can
clean up after ourselves. However there’s a whole mess of functionality we’d reasonably want.
In particular, we have a proper array, but none of the slice functionality. That’s actually pretty
easy to solve: we can implement Deref<Target=[T]>. This will magically make our Vec coerce
to, and behave like, a slice in all sorts of conditions.

All we need is slice::from_raw_parts. It will correctly handle empty slices for us. Later once
we set up zero-sized type support it will also Just Work for those too.

use std::ops::Deref;
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impl<T> Deref for Vec<T> {
type Target = [T];
fn deref(&self) -> &[T] {

unsafe {
::std::slice::from_raw_parts(*self.ptr, self.len)

}
}

}

And let’s do DerefMut too:

use std::ops::DerefMut;

impl<T> DerefMut for Vec<T> {
fn deref_mut(&mut self) -> &mut [T] {

unsafe {
::std::slice::from_raw_parts_mut(*self.ptr, self.len)

}
}

}

Now we have len, first, last, indexing, slicing, sorting, iter, iter_mut, and all other sorts of
bells and whistles provided by slice. Sweet!

Insert and Remove

Something not provided by slice is insert and remove, so let’s do those next.

Insert needs to shift all the elements at the target index to the right by one. To do this we need
to use ptr::copy, which is our version of C’s memmove. This copies some chunk of memory from
one location to another, correctly handling the case where the source and destination overlap
(which will definitely happen here).

If we insert at index i, we want to shift the [i .. len] to [i+1 .. len+1] using the old len.

pub fn insert(&mut self, index: usize, elem: T) {
// Note: `<=` because it's valid to insert after everything
// which would be equivalent to push.
assert!(index <= self.len, "index out of bounds");
if self.cap == self.len { self.grow(); }

unsafe {
if index < self.len {

// ptr::copy(src, dest, len): "copy from source to dest len elems"
ptr::copy(self.ptr.offset(index as isize),

self.ptr.offset(index as isize + 1),
self.len - index);



98 CHAPTER 10. IMPLEMENTING VEC

}
ptr::write(self.ptr.offset(index as isize), elem);
self.len += 1;

}
}

Remove behaves in the opposite manner. We need to shift all the elements from [i+1 .. len +
1] to [i .. len] using the new len.

pub fn remove(&mut self, index: usize) -> T {
// Note: `<` because it's *not* valid to remove after everything
assert!(index < self.len, "index out of bounds");
unsafe {

self.len -= 1;
let result = ptr::read(self.ptr.offset(index as isize));
ptr::copy(self.ptr.offset(index as isize + 1),

self.ptr.offset(index as isize),
self.len - index);

result
}

}

IntoIter

Let’s move on to writing iterators. iter and iter_mut have already been written for us thanks
to The Magic of Deref. However there’s two interesting iterators that Vec provides that slices
can’t: into_iter and drain.
IntoIter consumes the Vec by-value, and can consequently yield its elements by-value. In order
to enable this, IntoIter needs to take control of Vec’s allocation.
IntoIter needs to be DoubleEnded as well, to enable reading from both ends. Reading from the
back could just be implemented as calling pop, but reading from the front is harder. We could
call remove(0) but that would be insanely expensive. Instead we’re going to just use ptr::read to
copy values out of either end of the Vec without mutating the buffer at all.
To do this we’re going to use a very common C idiom for array iteration. We’ll make two pointers;
one that points to the start of the array, and one that points to one-element past the end. When
we want an element from one end, we’ll read out the value pointed to at that end and move the
pointer over by one. When the two pointers are equal, we know we’re done.
Note that the order of read and offset are reversed for next and next_back For next_back the
pointer is always after the element it wants to read next, while for next the pointer is always at
the element it wants to read next. To see why this is, consider the case where every element but
one has been yielded.
The array looks like this:

S E
[X, X, X, O, X, X, X]
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If E pointed directly at the element it wanted to yield next, it would be indistinguishable from
the case where there are no more elements to yield.

Although we don’t actually care about it during iteration, we also need to hold onto the Vec’s
allocation information in order to free it once IntoIter is dropped.

So we’re going to use the following struct:

struct IntoIter<T> {
buf: Unique<T>,
cap: usize,
start: *const T,
end: *const T,

}

And this is what we end up with for initialization:

impl<T> Vec<T> {
fn into_iter(self) -> IntoIter<T> {

// Can't destructure Vec since it's Drop
let ptr = self.ptr;
let cap = self.cap;
let len = self.len;

// Make sure not to drop Vec since that will free the buffer
mem::forget(self);

unsafe {
IntoIter {

buf: ptr,
cap: cap,
start: *ptr,
end: if cap == 0 {

// can't offset off this pointer, it's not allocated!
*ptr

} else {
ptr.offset(len as isize)

}
}

}
}

}

Here’s iterating forward:

impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> {

if self.start == self.end {
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None
} else {

unsafe {
let result = ptr::read(self.start);
self.start = self.start.offset(1);
Some(result)

}
}

}

fn size_hint(&self) -> (usize, Option<usize>) {
let len = (self.end as usize - self.start as usize)

/ mem::size_of::<T>();
(len, Some(len))

}
}

And here’s iterating backwards.

impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<T> {

if self.start == self.end {
None

} else {
unsafe {

self.end = self.end.offset(-1);
Some(ptr::read(self.end))

}
}

}
}

Because IntoIter takes ownership of its allocation, it needs to implement Drop to free it. However
it also wants to implement Drop to drop any elements it contains that weren’t yielded.

impl<T> Drop for IntoIter<T> {
fn drop(&mut self) {

if self.cap != 0 {
// drop any remaining elements
for _ in &mut *self {}

let align = mem::align_of::<T>();
let elem_size = mem::size_of::<T>();
let num_bytes = elem_size * self.cap;
unsafe {

heap::deallocate(*self.buf as *mut _, num_bytes, align);
}

}
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}
}

RawVec

We’ve actually reached an interesting situation here: we’ve duplicated the logic for specifying a
buffer and freeing its memory in Vec and IntoIter. Now that we’ve implemented it and identified
actual logic duplication, this is a good time to perform some logic compression.

We’re going to abstract out the (ptr, cap) pair and give them the logic for allocating, growing,
and freeing:

struct RawVec<T> {
ptr: Unique<T>,
cap: usize,

}

impl<T> RawVec<T> {
fn new() -> Self {

assert!(mem::size_of::<T>() != 0, "TODO: implement ZST support");
unsafe {

RawVec { ptr: Unique::new(heap::EMPTY as *mut T), cap: 0 }
}

}

// unchanged from Vec
fn grow(&mut self) {

unsafe {
let align = mem::align_of::<T>();
let elem_size = mem::size_of::<T>();

let (new_cap, ptr) = if self.cap == 0 {
let ptr = heap::allocate(elem_size, align);
(1, ptr)

} else {
let new_cap = 2 * self.cap;
let ptr = heap::reallocate(*self.ptr as *mut _,

self.cap * elem_size,
new_cap * elem_size,
align);

(new_cap, ptr)
};

// If allocate or reallocate fail, we'll get `null` back
if ptr.is_null() { oom() }

self.ptr = Unique::new(ptr as *mut _);
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self.cap = new_cap;
}

}
}

impl<T> Drop for RawVec<T> {
fn drop(&mut self) {

if self.cap != 0 {
let align = mem::align_of::<T>();
let elem_size = mem::size_of::<T>();
let num_bytes = elem_size * self.cap;
unsafe {

heap::deallocate(*self.ptr as *mut _, num_bytes, align);
}

}
}

}

And change Vec as follows:

pub struct Vec<T> {
buf: RawVec<T>,
len: usize,

}

impl<T> Vec<T> {
fn ptr(&self) -> *mut T { *self.buf.ptr }

fn cap(&self) -> usize { self.buf.cap }

pub fn new() -> Self {
Vec { buf: RawVec::new(), len: 0 }

}

// push/pop/insert/remove largely unchanged:
// * `self.ptr -> self.ptr()`
// * `self.cap -> self.cap()`
// * `self.grow -> self.buf.grow()`

}

impl<T> Drop for Vec<T> {
fn drop(&mut self) {

while let Some(_) = self.pop() {}
// deallocation is handled by RawVec

}
}

And finally we can really simplify IntoIter:
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struct IntoIter<T> {
_buf: RawVec<T>, // we don't actually care about this. Just need it to live.
start: *const T,
end: *const T,

}

// next and next_back literally unchanged since they never referred to the buf

impl<T> Drop for IntoIter<T> {
fn drop(&mut self) {

// only need to ensure all our elements are read;
// buffer will clean itself up afterwards.
for _ in &mut *self {}

}
}

impl<T> Vec<T> {
pub fn into_iter(self) -> IntoIter<T> {

unsafe {
// need to use ptr::read to unsafely move the buf out since it's
// not Copy, and Vec implements Drop (so we can't destructure it).
let buf = ptr::read(&self.buf);
let len = self.len;
mem::forget(self);

IntoIter {
start: *buf.ptr,
end: buf.ptr.offset(len as isize),
_buf: buf,

}
}

}
}

Much better.

Drain

Let’s move on to Drain. Drain is largely the same as IntoIter, except that instead of consuming
the Vec, it borrows the Vec and leaves its allocation untouched. For now we’ll only implement
the “basic” full-range version.

use std::marker::PhantomData;

struct Drain<'a, T: 'a> {
// Need to bound the lifetime here, so we do it with `&'a mut Vec<T>`
// because that's semantically what we contain. We're "just" calling
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// `pop()` and `remove(0)`.
vec: PhantomData<&'a mut Vec<T>>
start: *const T,
end: *const T,

}

impl<'a, T> Iterator for Drain<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {

if self.start == self.end {
None

– wait, this is seeming familiar. Let’s do some more compression. Both IntoIter and Drain have
the exact same structure, let’s just factor it out.

struct RawValIter<T> {
start: *const T,
end: *const T,

}

impl<T> RawValIter<T> {
// unsafe to construct because it has no associated lifetimes.
// This is necessary to store a RawValIter in the same struct as
// its actual allocation. OK since it's a private implementation
// detail.
unsafe fn new(slice: &[T]) -> Self {

RawValIter {
start: slice.as_ptr(),
end: if slice.len() == 0 {

// if `len = 0`, then this is not actually allocated memory.
// Need to avoid offsetting because that will give wrong
// information to LLVM via GEP.
slice.as_ptr()

} else {
slice.as_ptr().offset(slice.len() as isize)

}
}

}
}

// Iterator and DoubleEndedIterator impls identical to IntoIter.

And IntoIter becomes the following:

pub struct IntoIter<T> {
_buf: RawVec<T>, // we don't actually care about this. Just need it to live.
iter: RawValIter<T>,

}
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impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }

}

impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }

}

impl<T> Drop for IntoIter<T> {
fn drop(&mut self) {

for _ in &mut self.iter {}
}

}

impl<T> Vec<T> {
pub fn into_iter(self) -> IntoIter<T> {

unsafe {
let iter = RawValIter::new(&self);

let buf = ptr::read(&self.buf);
mem::forget(self);

IntoIter {
iter: iter,
_buf: buf,

}
}

}
}

Note that I’ve left a few quirks in this design to make upgrading Drain to work with arbitrary
subranges a bit easier. In particular we could have RawValIter drain itself on drop, but that
won’t work right for a more complex Drain. We also take a slice to simplify Drain initialization.
Alright, now Drain is really easy:

use std::marker::PhantomData;

pub struct Drain<'a, T: 'a> {
vec: PhantomData<&'a mut Vec<T>>,
iter: RawValIter<T>,

}

impl<'a, T> Iterator for Drain<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
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}

impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }

}

impl<'a, T> Drop for Drain<'a, T> {
fn drop(&mut self) {

for _ in &mut self.iter {}
}

}

impl<T> Vec<T> {
pub fn drain(&mut self) -> Drain<T> {

unsafe {
let iter = RawValIter::new(&self);

// this is a mem::forget safety thing. If Drain is forgotten, we just
// leak the whole Vec's contents. Also we need to do this *eventually*
// anyway, so why not do it now?
self.len = 0;

Drain {
iter: iter,
vec: PhantomData,

}
}

}
}

For more details on the mem::forget problem, see the section on leaks (section 7, page 70).

Handling Zero-Sized Types

It’s time. We’re going to fight the specter that is zero-sized types. Safe Rust never needs to care
about this, but Vec is very intensive on raw pointers and raw allocations, which are exactly the
two things that care about zero-sized types. We need to be careful of two things:

• The raw allocator API has undefined behavior if you pass in 0 for an allocation size.
• raw pointer offsets are no-ops for zero-sized types, which will break our C-style pointer

iterator.

Thankfully we abstracted out pointer-iterators and allocating handling into RawValIter and
RawVec respectively. How mysteriously convenient.
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Allocating Zero-Sized Types

So if the allocator API doesn’t support zero-sized allocations, what on earth do we store as our
allocation? Why, heap::EMPTY of course! Almost every operation with a ZST is a no-op since
ZSTs have exactly one value, and therefore no state needs to be considered to store or load them.
This actually extends to ptr::read and ptr::write: they won’t actually look at the pointer at
all. As such we never need to change the pointer.

Note however that our previous reliance on running out of memory before overflow is no longer
valid with zero-sized types. We must explicitly guard against capacity overflow for zero-sized
types.

Due to our current architecture, all this means is writing 3 guards, one in each method of RawVec.

impl<T> RawVec<T> {
fn new() -> Self {

unsafe {
// !0 is usize::MAX. This branch should be stripped at compile time.
let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 };

// heap::EMPTY doubles as "unallocated" and "zero-sized allocation"
RawVec { ptr: Unique::new(heap::EMPTY as *mut T), cap: cap }

}
}

fn grow(&mut self) {
unsafe {

let elem_size = mem::size_of::<T>();

// since we set the capacity to usize::MAX when elem_size is
// 0, getting to here necessarily means the Vec is overfull.
assert!(elem_size != 0, "capacity overflow");

let align = mem::align_of::<T>();

let (new_cap, ptr) = if self.cap == 0 {
let ptr = heap::allocate(elem_size, align);
(1, ptr)

} else {
let new_cap = 2 * self.cap;
let ptr = heap::reallocate(*self.ptr as *mut _,

self.cap * elem_size,
new_cap * elem_size,
align);

(new_cap, ptr)
};

// If allocate or reallocate fail, we'll get `null` back
if ptr.is_null() { oom() }
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self.ptr = Unique::new(ptr as *mut _);
self.cap = new_cap;

}
}

}

impl<T> Drop for RawVec<T> {
fn drop(&mut self) {

let elem_size = mem::size_of::<T>();

// don't free zero-sized allocations, as they were never allocated.
if self.cap != 0 && elem_size != 0 {

let align = mem::align_of::<T>();

let num_bytes = elem_size * self.cap;
unsafe {

heap::deallocate(*self.ptr as *mut _, num_bytes, align);
}

}
}

}

That’s it. We support pushing and popping zero-sized types now. Our iterators (that aren’t
provided by slice Deref) are still busted, though.

Iterating Zero-Sized Types

Zero-sized offsets are no-ops. This means that our current design will always initialize start and
end as the same value, and our iterators will yield nothing. The current solution to this is to
cast the pointers to integers, increment, and then cast them back:

impl<T> RawValIter<T> {
unsafe fn new(slice: &[T]) -> Self {

RawValIter {
start: slice.as_ptr(),
end: if mem::size_of::<T>() == 0 {

((slice.as_ptr() as usize) + slice.len()) as *const _
} else if slice.len() == 0 {

slice.as_ptr()
} else {

slice.as_ptr().offset(slice.len() as isize)
}

}
}

}

Now we have a different bug. Instead of our iterators not running at all, our iterators now run
forever. We need to do the same trick in our iterator impls. Also, our size_hint computation
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code will divide by 0 for ZSTs. Since we’ll basically be treating the two pointers as if they point
to bytes, we’ll just map size 0 to divide by 1.

impl<T> Iterator for RawValIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> {

if self.start == self.end {
None

} else {
unsafe {

let result = ptr::read(self.start);
self.start = if mem::size_of::<T>() == 0 {

(self.start as usize + 1) as *const _
} else {

self.start.offset(1)
};
Some(result)

}
}

}

fn size_hint(&self) -> (usize, Option<usize>) {
let elem_size = mem::size_of::<T>();
let len = (self.end as usize - self.start as usize)

/ if elem_size == 0 { 1 } else { elem_size };
(len, Some(len))

}
}

impl<T> DoubleEndedIterator for RawValIter<T> {
fn next_back(&mut self) -> Option<T> {

if self.start == self.end {
None

} else {
unsafe {

self.end = if mem::size_of::<T>() == 0 {
(self.end as usize - 1) as *const _

} else {
self.end.offset(-1)

};
Some(ptr::read(self.end))

}
}

}
}

And that’s it. Iteration works!
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Final Code

#![feature(unique)]
#![feature(alloc, heap_api)]

extern crate alloc;

use std::ptr::{Unique, self};
use std::mem;
use std::ops::{Deref, DerefMut};
use std::marker::PhantomData;

use alloc::heap;

struct RawVec<T> {
ptr: Unique<T>,
cap: usize,

}

impl<T> RawVec<T> {
fn new() -> Self {

unsafe {
// !0 is usize::MAX. This branch should be stripped at compile time.
let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 };

// heap::EMPTY doubles as "unallocated" and "zero-sized allocation"
RawVec { ptr: Unique::new(heap::EMPTY as *mut T), cap: cap }

}
}

fn grow(&mut self) {
unsafe {

let elem_size = mem::size_of::<T>();

// since we set the capacity to usize::MAX when elem_size is
// 0, getting to here necessarily means the Vec is overfull.
assert!(elem_size != 0, "capacity overflow");

let align = mem::align_of::<T>();

let (new_cap, ptr) = if self.cap == 0 {
let ptr = heap::allocate(elem_size, align);
(1, ptr)

} else {
let new_cap = 2 * self.cap;
let ptr = heap::reallocate(*self.ptr as *mut _,

self.cap * elem_size,
new_cap * elem_size,
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align);
(new_cap, ptr)

};

// If allocate or reallocate fail, we'll get `null` back
if ptr.is_null() { oom() }

self.ptr = Unique::new(ptr as *mut _);
self.cap = new_cap;

}
}

}

impl<T> Drop for RawVec<T> {
fn drop(&mut self) {

let elem_size = mem::size_of::<T>();
if self.cap != 0 && elem_size != 0 {

let align = mem::align_of::<T>();

let num_bytes = elem_size * self.cap;
unsafe {

heap::deallocate(*self.ptr as *mut _, num_bytes, align);
}

}
}

}

pub struct Vec<T> {
buf: RawVec<T>,
len: usize,

}

impl<T> Vec<T> {
fn ptr(&self) -> *mut T { *self.buf.ptr }

fn cap(&self) -> usize { self.buf.cap }

pub fn new() -> Self {
Vec { buf: RawVec::new(), len: 0 }

}
pub fn push(&mut self, elem: T) {

if self.len == self.cap() { self.buf.grow(); }

unsafe {
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ptr::write(self.ptr().offset(self.len as isize), elem);
}

// Can't fail, we'll OOM first.
self.len += 1;

}

pub fn pop(&mut self) -> Option<T> {
if self.len == 0 {

None
} else {

self.len -= 1;
unsafe {

Some(ptr::read(self.ptr().offset(self.len as isize)))
}

}
}

pub fn insert(&mut self, index: usize, elem: T) {
assert!(index <= self.len, "index out of bounds");
if self.cap() == self.len { self.buf.grow(); }

unsafe {
if index < self.len {

ptr::copy(self.ptr().offset(index as isize),
self.ptr().offset(index as isize + 1),
self.len - index);

}
ptr::write(self.ptr().offset(index as isize), elem);
self.len += 1;

}
}

pub fn remove(&mut self, index: usize) -> T {
assert!(index < self.len, "index out of bounds");
unsafe {

self.len -= 1;
let result = ptr::read(self.ptr().offset(index as isize));
ptr::copy(self.ptr().offset(index as isize + 1),

self.ptr().offset(index as isize),
self.len - index);

result
}

}

pub fn into_iter(self) -> IntoIter<T> {
unsafe {

let iter = RawValIter::new(&self);
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let buf = ptr::read(&self.buf);
mem::forget(self);

IntoIter {
iter: iter,
_buf: buf,

}
}

}

pub fn drain(&mut self) -> Drain<T> {
unsafe {

let iter = RawValIter::new(&self);

// this is a mem::forget safety thing. If Drain is forgotten, we just
// leak the whole Vec's contents. Also we need to do this *eventually*
// anyway, so why not do it now?
self.len = 0;

Drain {
iter: iter,
vec: PhantomData,

}
}

}
}

impl<T> Drop for Vec<T> {
fn drop(&mut self) {

while let Some(_) = self.pop() {}
// allocation is handled by RawVec

}
}

impl<T> Deref for Vec<T> {
type Target = [T];
fn deref(&self) -> &[T] {

unsafe {
::std::slice::from_raw_parts(self.ptr(), self.len)

}
}

}

impl<T> DerefMut for Vec<T> {
fn deref_mut(&mut self) -> &mut [T] {

unsafe {
::std::slice::from_raw_parts_mut(self.ptr(), self.len)

}
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}
}

struct RawValIter<T> {
start: *const T,
end: *const T,

}

impl<T> RawValIter<T> {
unsafe fn new(slice: &[T]) -> Self {

RawValIter {
start: slice.as_ptr(),
end: if mem::size_of::<T>() == 0 {

((slice.as_ptr() as usize) + slice.len()) as *const _
} else if slice.len() == 0 {

slice.as_ptr()
} else {

slice.as_ptr().offset(slice.len() as isize)
}

}
}

}

impl<T> Iterator for RawValIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> {

if self.start == self.end {
None

} else {
unsafe {

let result = ptr::read(self.start);
self.start = if mem::size_of::<T>() == 0 {

(self.start as usize + 1) as *const _
} else {

self.start.offset(1)
};
Some(result)

}
}

}

fn size_hint(&self) -> (usize, Option<usize>) {
let elem_size = mem::size_of::<T>();
let len = (self.end as usize - self.start as usize)
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/ if elem_size == 0 { 1 } else { elem_size };
(len, Some(len))

}
}

impl<T> DoubleEndedIterator for RawValIter<T> {
fn next_back(&mut self) -> Option<T> {

if self.start == self.end {
None

} else {
unsafe {

self.end = if mem::size_of::<T>() == 0 {
(self.end as usize - 1) as *const _

} else {
self.end.offset(-1)

};
Some(ptr::read(self.end))

}
}

}
}

pub struct IntoIter<T> {
_buf: RawVec<T>, // we don't actually care about this. Just need it to live.
iter: RawValIter<T>,

}

impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }

}

impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }

}

impl<T> Drop for IntoIter<T> {
fn drop(&mut self) {

for _ in &mut *self {}
}

}
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pub struct Drain<'a, T: 'a> {
vec: PhantomData<&'a mut Vec<T>>,
iter: RawValIter<T>,

}

impl<'a, T> Iterator for Drain<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.iter.next_back() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }

}

impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }

}

impl<'a, T> Drop for Drain<'a, T> {
fn drop(&mut self) {

// pre-drain the iter
for _ in &mut self.iter {}

}
}

/// Abort the process, we're out of memory!
///
/// In practice this is probably dead code on most OSes
fn oom() {

::std::process::exit(-9999);
}



11
Implementing Arc and Mutex

Knowing the theory is all fine and good, but the best way to understand something is to use
it. To better understand atomics and interior mutability, we’ll be implementing versions of the
standard library’s Arc and Mutex types.

TODO: ALL OF THIS OMG
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