The Rust Programming Language

The Rust Team

2016-06-02






Contents

1 Introduction 11
Contributing . . . . . . . . L 11

2 Getting Started 13
Installing Rust . . . . . . . . . . 13

Hello, world! . . . . . . . . . e 16

Hello, Cargo! . . . . . .« 19

Closing Thoughts . . . . . . . . . . . e 23

3 Tutorial: Guessing Game 25
SEt UD . . v 25
Processing a Guess . . . . . . . . ... 26
Generating a secret number . . . . ... .00 Lo 30
Comparing guesses . . . . . . . o . it e e e 33
Looping . . . . . . . 37
Complete! . . . . . . 41

4 Syntax and Semantics 43
Variable Bindings . . . . . . . .. L e 43
Patterns . . . . . . . 43

Type annotations . . . . . . . .. Lo 44
Mutability . . . . . . . . e 44
Initializing bindings . . . . . . . .. L oL 45

Scope and shadowing . . . . . . . . ... Lo 46
Functions . . . . . . . L 47
Primitive Types . . . . . . . . . oL 53

Booleans



CONTENTS

char . . e e e e e 53
Numeric types . . . . . . o e 53
ATTays . ..o 55
Slces . . . o o e 56
3 56
Tuples . . . . . L 56
Functions . . . . . . . . . e 58
Comments . . . . . . .. 58
L 59
Loops . . . . e 60
Vectors . . . . . e 64
Ownership . . . . . . . e 67
Meta . . . . . o e 67
Ownership . . . . . . . . e 67
Move semantics . . . . . . .. Lo e 68
More than ownership . . . . . . . . . ... Lo 71
References and Borrowing . . . . . . . . . . ... 71
Meta . . . . . o e 72
Borrowing . . . . . . . 72
&mut references . . ... L 74
The Rules . . . . . . . . 74
Lifetimes . . . . . . . . e 79
Meta . . . . o e 79
Lifetimes . . . . . . . . o 79
In structs . . . . o L 80
Mutability . . . . . . . 85
Interior vs. Exterior Mutability . . . . . . . . .. . L oo 86
Structs . . . . . e 87
Update syntax . . . . . . . . oL 89
Tuple structs . . . . . . . L. 90
Unit-like structs . . . . . . . oL 91
Enums . . . . . e 91



CONTENTS 5

Match . . . . . e 93
Matching onenums . . . . . . . ... L L 94
Patterns . . . . . . L 95
Multiple patterns . . . . . . . .. Lo 95
Destructuring . . . . . . . . . L 96
Ignoring bindings . . . . . . . .. .. 97
refand ref mut . . . . . ..o 98
Ranges . . . . . . . e 99
Bindings . . . . . ... 99
Guards . . . . . .. e 100
Mix and Match . . . . . . .. L 101
Method Syntax . . . . . . ... e 101
Method calls . . . . . . . . . oL 102
Chaining method calls . . . . . . . ... ... Lo 103
Associated functions . . . .. ... Lo 104
Builder Pattern . . . . . . .. Lo 105
Strings . . . . oL 106
GEenerics . . . . . . o e s 109
Traits . . . . o e 112
Rules for implementing traits . . . . . . . ... ... . o o 115
Multiple trait bounds . . . . . . . ... 117
Where clause . . . . . . .. L e 117
Default methods . . . . . . . .. .. 119
Inheritance . . . . . ... L 120
Deriving . . . . . . . L 120
Drop . . . o e 121
iflet . . . e e 122
Trait Objects . . . . . . . o o e e e 123
CloSUTes . . .« v v i e 129
Syntax . . ... e e 129
Closures and their environment . . . . . . . . . ... . L oL oL 130
Closure implementation . . . . . . . . . . ... o 133

Taking closures as arguments . . . . . . . . . ... Lo 133



CONTENTS

Function pointers and closures . . . . . . . . ... ... . L Lo 135
Returning closures . . . . . . . ... L e 136
Universal Function Call Syntax . . . . . . . . . ... . 138
Angle-bracket Form . . . . . . ... 140
Crates and Modules . . . . . . . . . . . 141
Basic terminology: Crates and Modules . . . . . ... .. ... ... ....... 141
Defining Modules . . . . . . . . .. e 142
Multiple File Crates . . . . . . . . . . . . 143
Importing External Crates . . . . . . . ... ... .. o o 145
Exporting a Public Interface . . . . . . . . .. ... o oo 145
Importing Modules withuse . . . . . . . . .. . . o 147
const and static . . . . . . ... 151
static . . . . L e 151
Initializing . . . . . . . .. 152
Which construct should Tuse? . . . . . . .. . ... . o 152
Attributes . . . . .o 152
type aliases . . . . . L. e e 153
Casting between types . . . . . . . . . . e 154
COErCion . . . . . . o e 154
AS . e e 155
transmute . . ... L L e e 157
Associated Types . . . . .« L L 158
Unsized Types . . . . . o o o o i e 161
PSized ... e e 161
Operators and Overloading . . . . . . . . . ... ... 162
Using operator traits in generic structs . . . . . . . .. .. ..o oL 163
Deref coercions . . . . . . .. 164
Macros . . . . . o e e e 166
Defining a macro . . . . . . . ... 167
Hygiene . . . . . . . . . e 170
Recursive macros . . . . . . . .. Lo L 172
Debugging macrocode . . . . . . ... Lo 173

Syntactic requirements . . . . . . . .. L. 173



CONTENTS 7

Scoping and macro import/export . . . .. ... Lo 175

The variable $crate . . . . . .. Lo 176
Thedeepend . . . . . . . . . e 177
Common MACTOS . . .« . v v v vt et e e e e e e 177
Procedural macros . . . . . . ... 179

Raw Pointers . . . . . . . . 179
Basics . . . . . 180

FFL . e 181
References and raw pointers . . . . . . . ... Lo oL 181
unsafe . .o L e 182
What does ‘safe’ mean? . . . . . .. ..o 182
Unsafe Superpowers . . . . . . . . . .. 183

5 Effective Rust 185
The Stack and the Heap . . . . . . . . . .. .. 185
Memory management . . . . .. ... Lo 185

The Stack . . . . . . . L 186

The Heap . . . . . . . . o 189
Arguments and borrowing . . . . ... ... L oL 191

A complex example . . . . . . ... 192
What do other languages do? . . . . . . . . ... Lo 195
Which touse? . . . . . . .. 196
Testing . . . . . oL 196
The test attribute . . . . . . .. . 197

The ignore attribute . . . . . . . . . ... 200

The tests module . . . . . . . .. . 201

The tests directory . . . . . .. ... 203
Documentation tests . . . . . .. ... oL 204
Conditional Compilation . . . . . . . . . . .. L 205
cfg attr . . . oL 206

cfgl L e 207
Documentation . . . . . . .. Lo L 207
Tterators . . . . . . L e 218

CONCUITENCY  « . v v v v v e e e e e e e e e e e e e e e 223



CONTENTS

Error Handling . . . . . . . . . oL 231
Table of Contents . . . . . . . . . . . e 232
The Basics . . . . . . . o o 233
Working with multiple error types . . . . . . . . ... Lo 243
Standard library traits used for error handling . . . . . . . . .. ... ... .... 250
Case study: A program to read population data . . . . . . . ... ... ... ... 257
The Short Story . . . . . . . . e 269
Choosing your Guarantees . . . . . . . . . . ... L 270
Basic pointer types . . . . . . L 270
Cell types . . . . o o 272
Synchronous types . . . . . . . . ... 274
Composition . . . . . . . .. e 276
FEL . o e 277
Introduction . . . . . . ... 277
Creating a safe interface . . . . . . . . . ... L o 278
Destructors . . . . . . . . L 280
Callbacks from C code to Rust functions . . . . . ... .. .. ... ... ... .. 280
Linking . . . . . o . e 283
Unsafe blocks . . . . . . . . 284
Accessing foreign globals . . . . . . . . ... 284
Foreign calling conventions . . . . . . .. .. ... .. Lo L. 285
Interoperability with foreign code . . . . . . . ... Lo oL 286
The “nullable pointer optimization” . . . .. ... .. ... ... .. ... .. 286
Calling Rust code from C . . . . . . . . ... 286
FFT and panics . . . . . . . . .. o e 287
Representing opaque structs . . . . . . .. ..o L oo 287
Borrow and AsRef . . . . . .. 288
Borrow . . . . . L 288
AsRef . . . e 289
Which should Tuse? . . . . . . ... . 289
Release Channels . . . . . . . . . 0 0 e 290
OVEIrVIEW . . . o o e 290
Choosing a version . . . . . . . . . . . i e 290
Helping the ecosystem through CI . . . . . .. ... ... ... ... ....... 290

Using Rust without the standard library . . . . . . . .. ... ... ... ... ... 291



CONTENTS

6 Nightly Rust
Compiler Plugins . . . . . . . ..
Introduction . . . . . . . ..
Syntax extensions . . . . . .
Lint plugins . . . . . .. ..
Inline Assembly . . . . . ... ..
Nostdlib ... ... ... ....
Intrinsics . . . . ... ... ...
Lang items . . ... ... .. ..
Advanced linking . . . . .. ...
Link args . ... ... ...
Static linking . . . ... ..
Benchmark Tests . . . . . .. ..
Box Syntax and Patterns . . . .
Returning Pointers . . . . .
Slice Patterns . . . . . . ... ..
Associated Constants . . . . . . .
Custom Allocators . . . ... ..
Default Allocator . . . . . .
Switching Allocators . . . .
Writing a custom allocator

Custom allocator limitations
7 Glossary
8 Syntax Index

9 Bibliography

293
294
294
295
297
299
302
303
304
305
305
306
308
311
311
312
313
315
315
315
316
318

319

321

327



10

CONTENTS



Introduction

Welcome! This book will teach you about the Rust Programming Language!. Rust is a systems
programming language focused on three goals: safety, speed, and concurrency. It maintains these
goals without having a garbage collector, making it a useful language for a number of use cases
other languages aren’t good at: embedding in other languages, programs with specific space
and time requirements, and writing low-level code, like device drivers and operating systems. It
improves on current languages targeting this space by having a number of compile-time safety
checks that produce no runtime overhead, while eliminating all data races. Rust also aims to
achieve ‘zero-cost abstractions’ even though some of these abstractions feel like those of a high-
level language. Even then, Rust still allows precise control like a low-level language would.

“The Rust Programming Language” is split into chapters. This introduction is the first. After
this:

o Getting started (chapter 2, page 13) - Set up your computer for Rust development.

o Tutorial: Guessing Game (chapter 3, page 25) - Learn some Rust with a small project.

o Syntax and Semantics (chapter 4, page 43) - Each bit of Rust, broken down into small
chunks.

o Effective Rust (chapter 5, page 185) - Higher-level concepts for writing excellent Rust code.

o Nightly Rust (chapter 6, page 293) - Cutting-edge features that aren’t in stable builds yet.

o Glossary (chapter 7, page 319) - A reference of terms used in the book.

 Bibliography (chapter 9, page 327) - Background on Rust’s influences, papers about Rust.

Contributing

The source files from which this book is generated can be found on GitHub?.

Thttps://www.rust-lang.org
2https://github.com/rust-lang/rust /tree/master/src/doc/book


https://www.rust-lang.org
https://github.com/rust-lang/rust/tree/master/src/doc/book

12

CHAPTER 1. INTRODUCTION



Getting Started

This first chapter of the book will get us going with Rust and its tooling. First, we’ll install Rust.
Then, the classic ‘Hello World’ program. Finally, we’ll talk about Cargo, Rust’s build system
and package manager.

Installing Rust

The first step to using Rust is to install it. Generally speaking, you’ll need an Internet connection
to run the commands in this section, as we’ll be downloading Rust from the Internet.

We'll be showing off a number of commands using a terminal, and those lines all start with $.
We don’t need to type in the $s, they are there to indicate the start of each command. We'll see
many tutorials and examples around the web that follow this convention: $ for commands run
as our regular user, and # for commands we should be running as an administrator.

Platform support

The Rust compiler runs on, and compiles to, a great number of platforms, though not all platforms
are equally supported. Rust’s support levels are organized into three tiers, each with a different
set of guarantees.

Platforms are identified by their “target triple” which is the string to inform the compiler what
kind of output should be produced. The columns below indicate whether the corresponding
component works on the specified platform.

Tier 1

Tier 1 platforms can be thought of as “guaranteed to build and work”. Specifically they will each
satisfy the following requirements:

o Automated testing is set up to run tests for the platform.



14

CHAPTER 2. GETTING STARTED

o Landing changes to the rust-lang/rust repository’s master branch is gated on tests passing.
o Official release artifacts are provided for the platform.
e Documentation for how to use and how to build the platform is available.

Target std rustc cargo notes

i686-apple-darwin v v v 32-bit OSX (10.7+, Lion+)
i686-pc-windows-gnu v v v 32-bit MinGW (Windows 7+)
i686-pc-windows-msvc v o/ v 32-bit MSVC (Windows 7+)
i686-unknown-linux-gnu v v v 32-bit Linux (2.6.18+)
x86_64-apple-darwin v oV v 64-bit OSX (10.7+, Lion+)
x86_64-pc-windows -gnu v v v 64-bit MinGW (Windows 7+)
x86_64-pc-windows-msvc v v v 64-bit MSVC (Windows 7+)
x86_64-unknown-linux-gnu v Vv v 64-bit Linux (2.6.18+)

Tier 2

Tier 2 platforms can be thought of as “guaranteed to build”. Automated tests are not run so
it’s not guaranteed to produce a working build, but platforms often work to quite a good degree
and patches are always welcome! Specifically, these platforms are required to have each of the

following:

o Automated building is set up, but may not be running tests.

o Landing changes to the rust-lang/rust repository’s master branch is gated on platforms
building. Note that this means for some platforms only the standard library is compiled,
but for others the full bootstrap is run.

o Official release artifacts are provided for the platform.

Target std rustc cargo notes

aarch64-apple-ios v ARMG64 i0S
aarch64-unknown-linux-gnu v v v ARMG64 Linux (2.6.18+)
arm-linux-androideabi v ARM Android
arm-unknown-linux-gnueabi v v v ARM Linux (2.6.18+)
arm-unknown-linux-gnueabihf v 7 v ARM Linux (2.6.18+)
armv7-apple-ios v ARM iOS
armv7-unknown-linux-gnueabihf vV v ARMv7 Linux (2.6.184)
armv7s-apple-ios v ARM iOS

i386-apple-ios v 32-bit x86 i0S
i586-pc-windows-msvc v 32-bit Windows w/o SSE
mips-unknown-linux-gnu v MIPS Linux (2.6.18+)
mips-unknown-linux-musl v MIPS Linux with MUSL
mipsel-unknown-linux-gnu v MIPS (LE) Linux (2.6.18+)
mipsel-unknown-linux-musl v MIPS (LE) Linux with MUSL
powerpc-unknown-linux-gnu v PowerPC Linux (2.6.18+)
powerpc64-unknown-linux-gnu v PPC64 Linux (2.6.18+)
powerpc64le-unknown-linux-gnu Vv PPCG64LE Linux (2.6.18+)
x86_64-apple-ios v 64-bit x86 i0S



15

Target std rustc cargo notes
x86_64-rumprun-netbsd 64-bit NetBSD Rump Kernel
x86_64-unknown-freebsd v v 64-bit FreeBSD

64-bit Linux with MUSL
v v 64-bit NetBSD

x86 64 -unknown-linux-musl
x86_64-unknown-netbsd

ESRNENEN

Tier 3

Tier 3 platforms are those which Rust has support for, but landing changes is not gated on the
platform either building or passing tests. Working builds for these platforms may be spotty
as their reliability is often defined in terms of community contributions. Additionally, release
artifacts and installers are not provided, but there may be community infrastructure producing
these in unofficial locations.

Target std rustc cargo notes

ARM64 Android
ARM-v7a Android
32-bit x86 Android
Windows XP support
v 32-bit FreeBSD
Windows XP support
64-bit Solaris/SunOS
64-bit Bitrig
64-bit DragonFlyBSD
64-bit OpenBSD

aarch64-linux-android
armv7-linux-androideabi
1686-linux-android
1686-pc-windows-msvc (XP)
1686-unknown-freebsd
x86_64-pc-windows-msvc (XP)
x86 64-sun-solaris

x86 64-unknown-bitrig

x86 64-unknown-dragonfly
x86_64-unknown-openbsd

AN N N NS NENEN

NN NN

Note that this table can be expanded over time, this isn’t the exhaustive set of tier 3 platforms
that will ever be!

Installing on Linux or Mac

If we’re on Linux or a Mac, all we need to do is open a terminal and type this:

$ curl -sSf https://static.rust-lang.org/rustup.sh | sh

This will download a script, and start the installation. If it all goes well, you’ll see this appear:
Rust is ready to roll.

From here, press y for ‘yes’, and then follow the rest of the prompts.

Installing on Windows

If you're on Windows, please download the appropriate installer!.

Thttps://www.rust-lang.org/install.html


https://www.rust-lang.org/install.html

16 CHAPTER 2. GETTING STARTED

Uninstalling

Uninstalling Rust is as easy as installing it. On Linux or Mac, run the uninstall script:

$ sudo /usr/local/lib/rustlib/uninstall.sh

If we used the Windows installer, we can re-run the .msi and it will give us an uninstall option.

Troubleshooting

If we’ve got Rust installed, we can open up a shell, and type this:

$ rustc --version

You should see the version number, commit hash, and commit date.
If you do, Rust has been installed successfully! Congrats!

If you don’t and you’re on Windows, check that Rust is in your %PATH% system variable. If
it isn’t, run the installer again, select “Change” on the “Change, repair, or remove installation”
page and ensure “Add to PATH?” is installed on the local hard drive.

Rust does not do its own linking, and so you’ll need to have a linker installed. Doing so will
depend on your specific system, consult its documentation for more details.

If not, there are a number of places where we can get help. The easiest is the #rust-beginners IRC
channel on irc.mozilla.org? and for general discussion the #rust IRC channel on irc.mozilla.org?,
which we can access through Mibbit*. Then we’ll be chatting with other Rustaceans (a silly
nickname we call ourselves) who can help us out. Other great resources include the user’s
forum® and Stack Overflow®.

This installer also installs a copy of the documentation locally, so we can read it offline. On UNIX
systems, /usr/local/share/doc/rust is the location. On Windows, it’s in a share/doc directory,
inside the directory to which Rust was installed.

Hello, world!

Now that you have Rust installed, we’ll help you write your first Rust program. It’s traditional
when learning a new language to write a little program to print the text “Hello, world!” to the
screen, and in this section, we’ll follow that tradition.

The nice thing about starting with such a simple program is that you can quickly verify that
your compiler is installed, and that it’s working properly. Printing information to the screen is
also a pretty common thing to do, so practicing it early on is good.

2irc:/ /irc.mozilla.org/#rust-beginners

3irc:/ /irc.mozilla.org/#rust
4http://chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust-beginners, %23rust
Shttps://users.rust-lang.org/

Shttp:/ /stackoverflow.com/questions/tagged /rust


irc://irc.mozilla.org/#rust-beginners
irc://irc.mozilla.org/#rust
http://chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust-beginners,%23rust
https://users.rust-lang.org/
http://stackoverflow.com/questions/tagged/rust

17

Note: This book assumes basic familiarity with the command line. Rust itself makes
no specific demands about your editing, tooling, or where your code lives, so if you
prefer an IDE to the command line, that’s an option. You may want to check out
[SolidOak], which was built specifically with Rust in mind. There are a number of
extensions in development by the community, and the Rust team ships plugins for
[various editors]. Configuring your editor or IDE is out of the scope of this tutorial,
so check the documentation for your specific setup.

Creating a Project File

First, make a file to put your Rust code in. Rust doesn’t care where your code lives, but for this
book, I suggest making a projects directory in your home directory, and keeping all your projects
there. Open a terminal and enter the following commands to make a directory for this particular
project:

$ mkdir ~/projects
$ cd ~/projects

$ mkdir hello world
$ cd hello world

Note: If you're on Windows and not using PowerShell, the ~ may not work. Consult
the documentation for your shell for more details.

Writing and Running a Rust Program

Next, make a new source file and call it main.rs. Rust files always end in a .rs extension. If you're
using more than one word in your filename, use an underscore to separate them; for example,
you’d use hello__world.rs rather than helloworld.rs.

Now open the main.rs file you just created, and type the following code:

fn main() {
println! ("Hello, world!");

Save the file, and go back to your terminal window. On Linux or OSX, enter the following
commands:

$ rustc main.rs
$ ./main
Hello, world!

In Windows, replace main with main.exe. Regardless of your operating system, you should see
the string Hello, world! print to the terminal. If you did, then congratulations! You’ve officially
written a Rust program. That makes you a Rust programmer! Welcome.



18 CHAPTER 2. GETTING STARTED

Anatomy of a Rust Program

Now, let’s go over what just happened in your “Hello, world!” program in detail. Here’s the first
piece of the puzzle:

fn main() {

These lines define a function in Rust. The main function is special: it’s the beginning of every
Rust program. The first line says, “I'm declaring a function named main that takes no arguments
and returns nothing.” If there were arguments, they would go inside the parentheses (( and
)), and because we aren’t returning anything from this function, we can omit the return type
entirely.

Also note that the function body is wrapped in curly braces ({ and }). Rust requires these around
all function bodies. It’s considered good style to put the opening curly brace on the same line
as the function declaration, with one space in between.

Inside the main() function:

println! ("Hello, world!");

This line does all of the work in this little program: it prints text to the screen. There are a
number of details that are important here. The first is that it’s indented with four spaces, not
tabs.

The second important part is the printin!() line. This is calling a Rust /macro/, which is how
metaprogramming is done in Rust. If it were calling a function instead, it would look like this:
println() (without the !). We’ll discuss Rust macros in more detail later, but for now you only
need to know that when you see a ! that means that you're calling a macro instead of a normal
function.

Next is "Hello, world!" which is a string. Strings are a surprisingly complicated topic in a
systems programming language, and this is a [statically allocated] string. We pass this string as
an argument to println!, which prints the string to the screen. Easy enough!

The line ends with a semicolon (;). Rust is an expression-oriented language (section 7, page 320),
which means that most things are expressions, rather than statements. The ; indicates that this
expression is over, and the next one is ready to begin. Most lines of Rust code end with a ;.

Compiling and Running Are Separate Steps
In “Writing and Running a Rust Program”, we showed you how to run a newly created program.
We'll break that process down and examine each step now.

Before running a Rust program, you have to compile it. You can use the Rust compiler by
entering the rustc command and passing it the name of your source file, like this:



19
$ rustc main.rs

If you come from a C or C++ background, you’ll notice that this is similar to gcc or clang. After
compiling successfully, Rust should output a binary executable, which you can see on Linux or
OSX by entering the 1s command in your shell as follows:

$ s
main main.rs

On Windows, you’d enter:

$ dir
main.exe main.rs

This shows we have two files: the source code, with an . rs extension, and the executable (main.exe
on Windows, main everywhere else). All that’s left to do from here is run the main or main.exe
file, like this:

$ ./main # or main.exe on Windows

If main.rs were your “Hello, world!” program, this would print Hello, world! to your terminal.

If you come from a dynamic language like Ruby, Python, or JavaScript, you may not be used
to compiling and running a program being separate steps. Rust is an ahead-of-time compiled
language, which means that you can compile a program, give it to someone else, and they can
run it even without Rust installed. If you give someone a .rb or .py or .js file, on the other
hand, they need to have a Ruby, Python, or JavaScript implementation installed (respectively),
but you only need one command to both compile and run your program. Everything is a tradeoff
in language design.

Just compiling with rustc is fine for simple programs, but as your project grows, you’ll want to
be able to manage all of the options your project has, and make it easy to share your code with
other people and projects. Next, I'll introduce you to a tool called Cargo, which will help you
write real-world Rust programs.

Hello, Cargo!

Cargo is Rust’s build system and package manager, and Rustaceans use Cargo to manage their
Rust projects. Cargo manages three things: building your code, downloading the libraries your
code depends on, and building those libraries. We call libraries your code needs ‘dependencies’
since your code depends on them.

The simplest Rust programs don’t have any dependencies, so right now, you’d only use the
first part of its functionality. As you write more complex Rust programs, you’ll want to add
dependencies, and if you start off using Cargo, that will be a lot easier to do.

As the vast, vast majority of Rust projects use Cargo, we will assume that you’re using it for the
rest of the book. Cargo comes installed with Rust itself, if you used the official installers. If you
installed Rust through some other means, you can check if you have Cargo installed by typing:



20 CHAPTER 2. GETTING STARTED

$ cargo --version

Into a terminal. If you see a version number, great! If you see an error like ‘command not
found’; then you should look at the documentation for the system in which you installed Rust,
to determine if Cargo is separate.

Converting to Cargo

Let’s convert the Hello World program to Cargo. To Cargo-fy a project, you need to do three
things:

1. Put your source file in the right directory.
2. Get rid of the old executable (main.exe on Windows, main everywhere else).
3. Make a Cargo configuration file.

Let’s get started!

Creating a Source Directory and Removing the Old Executable

First, go back to your terminal, move to your hello_ world directory, and enter the following
commands:

$ mkdir src
$ mv main.rs src/main.rs # or 'move main.rs src/main.rs' on Windows
$ rm main # or 'del main.exe' on Windows

Cargo expects your source files to live inside a src directory, so do that first. This leaves the
top-level project directory (in this case, hello__world) for READMEs, license information, and
anything else not related to your code. In this way, using Cargo helps you keep your projects
nice and tidy. There’s a place for everything, and everything is in its place.

Now, move main.rs into the src directory, and delete the compiled file you created with rustc.
As usual, replace main with main.exe if you're on Windows.

This example retains main.rs as the source filename because it’s creating an executable. If you
wanted to make a library instead, you’d name the file 1ib.rs. This convention is used by Cargo
to successfully compile your projects, but it can be overridden if you wish.

Creating a Configuration File
Next, create a new file inside your hello__world directory, and call it Cargo.toml.

Make sure to capitalize the C in Cargo.toml, or Cargo won’t know what to do with the configu-
ration file.

This file is in the [TOML] (Tom’s Obvious, Minimal Language) format. TOML is similar to INT,
but has some extra goodies, and is used as Cargo’s configuration format.

Inside this file, type the following information:



21

[package]
name = "hello world"
version = "0.0.1"

authors = [ "Your name <you@example.com>" ]

The first line, [package], indicates that the following statements are configuring a package. As
we add more information to this file, we’ll add other sections, but for now, we only have the
package configuration.

The other three lines set the three bits of configuration that Cargo needs to know to compile
your program: its name, what version it is, and who wrote it.

Once you've added this information to the Cargo.toml file, save it to finish creating the configu-
ration file.

Building and Running a Cargo Project

With your Cargo.toml file in place in your project’s root directory, you should be ready to build
and run your Hello World program! To do so, enter the following commands:

$ cargo build

Compiling hello world v0.0.1 (file:///home/yourname/projects/hello world)
$ ./target/debug/hello_world
Hello, world!

Bam! If all goes well, Hello, world! should print to the terminal once more.

You just built a project with cargo build and ran it with ./target/debug/hello world, but you
can actually do both in one step with cargo run as follows:

$ cargo run
Running " target/debug/hello_world"
Hello, world!

Notice that this example didn’t re-build the project. Cargo figured out that the file hasn’t
changed, and so it just ran the binary. If you’d modified your source code, Cargo would have
rebuilt the project before running it, and you would have seen something like this:

$ cargo run
Compiling hello world v0.0.1 (file:///home/yourname/projects/hello world)
Running "target/debug/hello_world®
Hello, world!

Cargo checks to see if any of your project’s files have been modified, and only rebuilds your
project if they’ve changed since the last time you built it.

With simple projects, Cargo doesn’t bring a whole lot over just using rustc, but it will become
useful in the future. This is especially true when you start using crates; these are synonymous
with a ‘library’ or ‘package’ in other programming languages. For complex projects composed
of multiple crates, it’s much easier to let Cargo coordinate the build. Using Cargo, you can run
cargo build, and it should work the right way.



22 CHAPTER 2. GETTING STARTED

Building for Release

When your project is ready for release, you can use cargo build --release to compile your
project with optimizations. These optimizations make your Rust code run faster, but turning
them on makes your program take longer to compile. This is why there are two different profiles,
one for development, and one for building the final program you’ll give to a user.

What Is That Cargo.lock?

Running cargo build also causes Cargo to create a new file called Cargo.lock, which looks like
this:

[root]
name = "hello world"
version = "0.0.1"

Cargo uses the Cargo.lock file to keep track of dependencies in your application. This is the
Hello World project’s Cargo.lock file. This project doesn’t have dependencies, so the file is a bit
sparse. Realistically, you won’t ever need to touch this file yourself; just let Cargo handle it.

That’s it! If you’ve been following along, you should have successfully built hello world with
Cargo.

Even though the project is simple, it now uses much of the real tooling you’ll use for the rest of
your Rust career. In fact, you can expect to start virtually all Rust projects with some variation
on the following commands:

$ git clone someurl.com/foo
$ cd foo
$ cargo build

Making A New Cargo Project the Easy Way

You don’t have to go through that previous process every time you want to start a new project!
Cargo can quickly make a bare-bones project directory that you can start developing in right
away.

To start a new project with Cargo, enter cargo new at the command line:

$ cargo new hello world --bin

This command passes --bin because the goal is to get straight to making an executable applica-
tion, as opposed to a library. Executables are often called binaries (as in /usr/bin, if you're on
a Unix system).

Cargo has generated two files and one directory for us: a Cargo.toml and a src directory with a
main.rs file inside. These should look familiar, they’re exactly what we created by hand, above.

This output is all you need to get started. First, open Cargo.toml. It should look something like
this:



23

[package]
name = "hello world"
version = "0.1.0"

authors = ["Your Name <you@example.com>"]

[dependencies]

Do not worry about the [dependencies] line, we will come back to it later.

Cargo has populated Cargo.toml with reasonable defaults based on the arguments you gave it and
your git global configuration. You may notice that Cargo has also initialized the hello world
directory as a git repository.

Here’s what should be in src/main.rs:

fn main() {
println! ("Hello, world!");

Cargo has generated a “Hello World!” for you, and you're ready to start coding!

Note: If you want to look at Cargo in more detail, check out the official [Cargo guide],
which covers all of its features.

Closing Thoughts

This chapter covered the basics that will serve you well through the rest of this book, and the
rest of your time with Rust. Now that you've got the tools down, we’ll cover more about the
Rust language itself.

You have two options: Dive into a project with ‘Tutorial: Guessing Game (chapter 3, page 25),
or start from the bottom and work your way up with ‘Syntax and Semantics (chapter 4, page 43)".
More experienced systems programmers will probably prefer ‘Tutorial: Guessing Game’, while
those from dynamic backgrounds may enjoy either. Different people learn differently! Choose
whatever’s right for you.



24

CHAPTER 2. GETTING STARTED



Tutorial: Guessing Game

Let’s learn some Rust! For our first project, we’ll implement a classic beginner programming
problem: the guessing game. Here’s how it works: Our program will generate a random integer
between one and a hundred. It will then prompt us to enter a guess. Upon entering our guess, it
will tell us if we’re too low or too high. Once we guess correctly, it will congratulate us. Sounds
good?

Along the way, we’ll learn a little bit about Rust. The next chapter, ‘Syntax and Semantics’,
will dive deeper into each part.

Set up

Let’s set up a new project. Go to your projects directory. Remember how we had to create our
directory structure and a Cargo.toml for hello world? Cargo has a command that does that for
us. Let’s give it a shot:

$ cd ~/projects
$ cargo new guessing game --bin
$ cd guessing game

We pass the name of our project to cargo new, and then the --bin flag, since we’re making a
binary, rather than a library.

Check out the generated Cargo.toml:

[package]
name = "guessing game"
version = "0.1.0"

authors = ["Your Name <you@example.com>"]



26 CHAPTER 3. TUTORIAL: GUESSING GAME
Cargo gets this information from your environment. If it’s not correct, go ahead and fix that.
Finally, Cargo generated a ‘Hello, world!” for us. Check out src/main.rs:

fn main() {
println!("Hello, world!");

Let’s try compiling what Cargo gave us:

$ cargo build
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)

Excellent! Open up your src/main.rs again. We’ll be writing all of our code in this file.

Before we move on, let me show you one more Cargo command: run. cargo run is kind of like
cargo build, but it also then runs the produced executable. Try it out:

$ cargo run
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)
Running "target/debug/guessing_game"
Hello, world!

Great! The run command comes in handy when you need to rapidly iterate on a project. Our
game is such a project, we need to quickly test each iteration before moving on to the next one.

Processing a Guess

Let’s get to it! The first thing we need to do for our guessing game is allow our player to input
a guess. Put this in your src/main.rs:

use std::io;

fn main() {
println! ("Guess the number!");

println! ("Please input your guess.");
let mut guess = String::new();

io::stdin().read line(&mut guess)
.expect("Failed to read line");

println! ("You guessed: {}", guess);

There’s a lot here! Let’s go over it, bit by bit.



27
use std::io;

We'll need to take user input, and then print the result as output. As such, we need the io
library from the standard library. Rust only imports a few things by default into every program,
the ‘prelude’’. If it’s not in the prelude, you’ll have to use it directly. There is also a second
‘prelude’, the io prelude?, which serves a similar function: you import it, and it imports a number
of useful, io-related things.

fn main() {

As you've seen before, the main() function is the entry point into your program. The fn syntax
declares a new function, the ()s indicate that there are no arguments, and { starts the body of
the function. Because we didn’t include a return type, it’s assumed to be (), an empty tuple
(section 4, page 56).

println! ("Guess the number!");

println! ("Please input your guess.");

We previously learned that println!() is a macro (section 4, page 166) that prints a string
(section 4, page 106) to the screen.

let mut guess = String::new();

Now we're getting interesting! There’s a lot going on in this little line. The first thing to notice
is that this is a let statement (section 4, page 43), which is used to create ‘variable bindings’.
They take this form:

let foo = bar;

This will create a new binding named foo, and bind it to the value bar. In many languages, this
is called a ‘variable’, but Rust’s variable bindings have a few tricks up their sleeves.

For example, they’re immutable (section 4, page 85) by default. That’s why our example uses
mut: it makes a binding mutable, rather than immutable. let doesn’t take a name on the left
hand side of the assignment, it actually accepts a ‘pattern (section 4, page 95)’. We’ll use patterns
later. It’s easy enough to use for now:

let foo = 5; // immutable.
let mut bar = 5; // mutable

Oh, and // will start a comment, until the end of the line. Rust ignores everything in comments
(section 4, page 58).

So now we know that let mut guess will introduce a mutable binding named guess, but we have
to look at the other side of the = for what it’s bound to: String::new().

Thttp://doc.rust-lang.org/std /prelude/index.html
2http://doc.rust-lang.org/std /io/prelude/index.html


http://doc.rust-lang.org/std/prelude/index.html
http://doc.rust-lang.org/std/io/prelude/index.html

28 CHAPTER 3. TUTORIAL: GUESSING GAME

String is a string type, provided by the standard library. A String? is a growable, UTF-8 encoded
bit of text.

The ::new() syntax uses :: because this is an ‘associated function’ of a particular type. That
is to say, it’s associated with String itself, rather than a particular instance of a String. Some
languages call this a ‘static method’.

This function is named new(), because it creates a new, empty String. You’ll find a new() function
on many types, as it’s a common name for making a new value of some kind.

Let’s move forward:

io::stdin().read line(&mut guess)
.expect("Failed to read line");

That’s a lot more! Let’s go bit-by-bit. The first line has two parts. Here’s the first:

io::stdin()

Remember how we used std::io on the first line of the program? We’re now calling an associated
function on it. If we didn’t use std::io, we could have written this line as std::io::stdin().

This particular function returns a handle to the standard input for your terminal. More specifi-
cally, a std::io::Stdin?.

The next part will use this handle to get input from the user:

.read_line(&mut guess)

Here, we call the read line()® method on our handle. Methods (section 4, page 101) are like
associated functions, but are only available on a particular instance of a type, rather than the
type itself. We're also passing one argument to read line(): &mut guess.

Remember how we bound guess above? We said it was mutable. However, read line doesn’t
take a String as an argument: it takes a &mut String. Rust has a feature called ‘references
(section 4, page 71)’, which allows you to have multiple references to one piece of data, which
can reduce copying. References are a complex feature, as one of Rust’s major selling points is
how safe and easy it is to use references. We don’t need to know a lot of those details to finish
our program right now, though. For now, all we need to know is that like let bindings, references
are immutable by default. Hence, we need to write &mut guess, rather than &guess.

Why does read line() take a mutable reference to a string? Its job is to take what the user
types into standard input, and place that into a string. So it takes that string as an argument,
and in order to add the input, it needs to be mutable.

But we’re not quite done with this line of code, though. While it’s a single line of text, it’s only
the first part of the single logical line of code:

3http://doc.rust-lang.org/std/string/struct.String.html
4http://doc.rust-lang.org/std/io/struct.Stdin.html
Shttp://doc.rust-lang.org/std /io/struct.Stdin.html#method.read_ line


http://doc.rust-lang.org/std/string/struct.String.html
http://doc.rust-lang.org/std/io/struct.Stdin.html
http://doc.rust-lang.org/std/io/struct.Stdin.html#method.read_line

29
.expect("Failed to read line");

When you call a method with the .foo() syntax, you may introduce a newline and other whites-
pace. This helps you split up long lines. We could have done:

io::stdin().read line(&mut guess).expect("failed to read line");

But that gets hard to read. So we’ve split it up, two lines for two method calls. We already
talked about read line(), but what about expect()? Well, we already mentioned that read -
line() puts what the user types into the &mut String we pass it. But it also returns a value: in
this case, an io::Result®. Rust has a number of types named Result in its standard library: a
generic Result?”, and then specific versions for sub-libraries, like io: :Result.

The purpose of these Result types is to encode error handling information. Values of the Result
type, like any type, have methods defined on them. In this case, io::Result has an expect()
method® that takes a value it’s called on, and if it isn’t a successful one, panic! (section 5,
page 231)s with a message you passed it. A panic! like this will cause our program to crash,
displaying the message.

If we leave off calling this method, our program will compile, but we’ll get a warning:

$ cargo build

Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)
src/main.rs:10:5: 10:39 warning: unused result which must be used,
#[warn(unused must use)] on by default
src/main.rs:10 io::stdin().read_line(&mut guess);

~

Rust warns us that we haven’t used the Result value. This warning comes from a special
annotation that io::Result has. Rust is trying to tell you that you haven’t handled a possible
error. The right way to suppress the error is to actually write error handling. Luckily, if we want
to crash if there’s a problem, we can use expect(). If we can recover from the error somehow,
we’d do something else, but we’ll save that for a future project.

There’s only one line of this first example left:

println! ("You guessed: {}", guess);

This prints out the string we saved our input in. The {}s are a placeholder, and so we pass it
guess as an argument. If we had multiple {}s, we would pass multiple arguments:

let x 5;
let y = 10;

println!("x and y: {} and {}", X, y);

6http://doc.rust-lang.org/std /io/type.Result.html
"http://doc.rust-lang.org/std /result /enum.Result.html
8http://doc.rust-lang.org/std /result /enum.Result.html#method.expect


http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html#method.expect

30 CHAPTER 3. TUTORIAL: GUESSING GAME

Easy.

Anyway, that’s the tour. We can run what we have with cargo run:

$ cargo run
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)
Running "target/debug/guessing_game"
Guess the number!
Please input your guess.
6
You guessed: 6

All right! Our first part is done: we can get input from the keyboard, and then print it back out.

Generating a secret number

Next, we need to generate a secret number. Rust does not yet include random number function-
ality in its standard library. The Rust team does, however, provide a rand crate. A ‘crate’ is
a package of Rust code. We’ve been building a ‘binary crate’, which is an executable. rand is a
‘library crate’, which contains code that’s intended to be used with other programs.

Using external crates is where Cargo really shines. Before we can write the code using rand, we
need to modify our Cargo.toml. Open it up, and add these few lines at the bottom:

[dependencies]
rand="0.3.0"

The [dependencies] section of Cargo.toml is like the [package] section: everything that follows
it is part of it, until the next section starts. Cargo uses the dependencies section to know
what dependencies on external crates you have, and what versions you require. In this case,
we’ve specified version 0.3.0, which Cargo understands to be any release that’s compatible with
this specific version. Cargo understands Semantic Versioning'?, which is a standard for writing
version numbers. A bare number like above is actually shorthand for "0.3.0, meaning “anything
compatible with 0.3.0”. If we wanted to use only 0.3.0 exactly, we could say rand="=0.3.0" (note
the two equal signs). And if we wanted to use the latest version we could use *. We could also
use a range of versions. Cargo’s documentation!! contains more details.

Now, without changing any of our code, let’s build our project:

$ cargo build

Updating registry “https://github.com/rust-lang/crates.io-index”
Downloading rand v0.3.8
Downloading libc v0.1.6

Compiling libc v0.1.6

Compiling rand v0.3.8

Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)

9https://crates.io/crates/rand
1Ohttp://semver.org
U http://doc.crates.io/crates-io.html


https://crates.io/crates/rand
http://semver.org
http://doc.crates.io/crates-io.html

31

(You may see different versions, of course.)

Lots of new output! Now that we have an external dependency, Cargo fetches the latest versions
of everything from the registry, which is a copy of data from Crates.io'?. Crates.io is where
people in the Rust ecosystem post their open source Rust projects for others to use.

After updating the registry, Cargo checks our [dependencies] and downloads any we don’t have
yet. In this case, while we only said we wanted to depend on rand, we’ve also grabbed a copy of
libc. This is because rand depends on libc to work. After downloading them, it compiles them,
and then compiles our project.

If we run cargo build again, we’ll get different output:

$ cargo build

That’s right, no output! Cargo knows that our project has been built, and that all of its depen-
dencies are built, and so there’s no reason to do all that stuff. With nothing to do, it simply
exits. If we open up src/main.rs again, make a trivial change, and then save it again, we’ll only
see one line:

$ cargo build
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)

So, we told Cargo we wanted any 0.3.x version of rand, and so it fetched the latest version at
the time this was written, v0.3.8. But what happens when next week, version v0.3.9 comes
out, with an important bugfix? While getting bugfixes is important, what if 0.3.9 contains a
regression that breaks our code?

The answer to this problem is the Cargo.lock file you’ll now find in your project directory. When
you build your project for the first time, Cargo figures out all of the versions that fit your criteria,
and then writes them to the Cargo.lock file. When you build your project in the future, Cargo
will see that the Cargo.lock file exists, and then use that specific version rather than do all the
work of figuring out versions again. This lets you have a repeatable build automatically. In other
words, we’ll stay at 0.3.8 until we explicitly upgrade, and so will anyone who we share our code
with, thanks to the lock file.

What about when we do want to use v0.3.97 Cargo has another command, update, which says
‘ignore the lock, figure out all the latest versions that fit what we’ve specified. If that works,
write those versions out 